《随机变量的数字特征》(至马尔可夫大数定律)_2021秋季《概率论与数理统计》复习笔记2.0_基于浙大第五版和华东师大版

数学期望

试验次数很大时,随机变量 X X X​的观察值的算术平均

以下各极限情况均要求绝对收敛。

性质

  1. 线性
  2. 独立性, E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y)

特殊的数学期望

泊松分布

E ( X ) = ∑ k = 0 + ∞ k λ k e − λ k ! = λ e − λ ∑ k = 1 + ∞ λ k − 1 ( k − 1 ) ! = λ e − λ ⋅ e λ = λ E(X)=\sum_{k=0}^{+\infin} k\frac{\lambda^k e^{-\lambda}}{k!}=\lambda e^{-\lambda}\sum_{k=1}^{+\infin}\frac{\lambda^{k-1}}{(k-1)!}=\lambda e^{-\lambda}\cdot e^\lambda=\lambda E(X)=k=0+kk!λkeλ=λeλk=1+(k1)!λk1=λeλeλ=λ

最后一个等号运用了泰特展开。

均匀分布

E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x = ∫ a b x 1 b − a d x = a + b 2 E(X)=\int_{-\infin}^{+\infin} xf(x){\rm d}x=\int_a^b x\frac{1}{b-a}{\rm d}x=\frac{a+b}{2} E(X)=+xf(x)dx=abxba1dx=2a+b

随机变量的函数的数学期望

正态分布

X ∼ N ( 0 , 1 ) X\sim N(0,1) XN(0,1)

奇函数
E ( Y ) = ∫ − ∞ + ∞ y 2 π e − y 2 2 d y = 0 E(Y)=\int_{-\infin}^{+\infin}\frac{y}{\sqrt{2\pi}}e^{-\frac{y^2}{2}}{\rm d}y=0 E(Y)=+2π ye2y2dy=0
偶函数
E ( ∣ Y ∣ ) = ∫ − ∞ + ∞ ∣ y ∣ 2 π e − y 2 2 d y = 2 2 π ∫ 0 + ∞ y e − y 2 2 d y = 2 2 π ∫ 0 + ∞ e − y 2 2 d ( y 2 2 ) = 2 π \begin{aligned} E(|Y|) &=\int_{-\infin}^{+\infin}\frac{|y|}{\sqrt{2\pi}}e^{-\frac{y^2}{2}}{\rm d}y \\ &=\frac{2}{\sqrt{2\pi}}\int_{0}^{+\infin} y e^{-\frac{y^2}{2}}{\rm d}y \\ &=\frac{2}{\sqrt{2\pi}}\int_{0}^{+\infin}e^{-\frac{y^2}{2}}{\rm d}{(\frac{y^2}2)} \\ &=\sqrt{\frac{2}{\pi}} \end{aligned} E(Y)=+2π ye2y2dy=2π 20+ye2y2dy=2π 20+e2y2d(2y2)=π2

X ∼ ( 0 , σ 2 ) X\sim(0,\sigma^2) X(0,σ2)

已知标准正态分布的绝对值的数学期望 E ( ∣ Y ∣ ) E(|Y|) E(Y),由数学期望的线性性质,
E ( ∣ X ∣ ) = E ( σ ⋅ ∣ X σ ∣ ) = σ 2 π E(|X|)=E(\sigma\cdot |\frac{X}{\sigma}|)=\sigma \sqrt{\frac{2}{\pi}} E(X)=E(σσX)=σπ2

X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2)

已知标准正态分布的数学期望 E ( Y ) E(Y) E(Y) 0 0 0,由数学期望的线性性质,
E ( X ) = E ( σ ⋅ X − μ σ + μ ) = σ ⋅ 0 + μ = μ E(X)=E(\sigma\cdot\frac{X-\mu}{\sigma}+\mu)=\sigma\cdot 0+\mu=\mu E(X)=E(σσXμ+μ)=σ0+μ=μ

方差

描述偏离程度。
E [ ∣ X − E ( X ) ∣ ] → E { [ X − E ( X ) ] 2 } E[|X-E(X)|]\rightarrow E\{[X-E(X)]^2\} E[XE(X)]E{[XE(X)]2}

与期望

D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 D(X)=E(X^2)-[E(X)]^2 D(X)=E(X2)[E(X)]2

证明

D ( X ) = E { [ X − E ( X ) ] 2 } = E { X 2 − 2 X E ( X ) + [ E ( X ) ] 2 } = E ( X 2 ) − 2 E ( X ) E ( X ) + [ E ( X ) ] 2 = E ( X 2 ) − [ E ( X ) ] 2 \begin{aligned} D(X) &= E\{[X-E(X)]^2\} \\ &= E\{X^2-2XE(X)+[E(X)]^2\} \\ &= E(X^2)-2E(X)E(X)+[E(X)]^2 \\ &= E(X^2)-[E(X)]^2 \end{aligned} D(X)=E{[XE(X)]2}=E{X22XE(X)+[E(X)]2}=E(X2)2E(X)E(X)+[E(X)]2=E(X2)[E(X)]2

性质

  1. D ( C X ) = C 2 D ( X ) , D ( X + C ) = D ( X ) D(CX)=C^2 D(X),D(X+C)=D(X) D(CX)=C2D(X),D(X+C)=D(X)

  2. D ( X + Y ) = D ( X ) + D ( Y ) + 2 E { [ X − E ( X ) ] [ Y − E ( Y ) ] } D(X+Y)=D(X)+D(Y)+2E\{[X-E(X)][Y-E(Y)]\} D(X+Y)=D(X)+D(Y)+2E{[XE(X)][YE(Y)]}

    X , Y X,Y X,Y​独立时, D ( X + Y ) = D ( X ) + D ( Y ) D(X+Y)=D(X)+D(Y) D(X+Y)=D(X)+D(Y)

  3. D ( X ) = 0 ⇔ P { X = E ( X ) } = 1 D(X)=0\Leftrightarrow P\{X=E(X)\}=1 D(X)=0P{X=E(X)}=1

证明

    • 左向
      P { X = E ( X ) } = 1 ⇒ P { X 2 = E 2 ( X ) } = 1 , D ( X ) = E ( X 2 ) − E 2 ( X ) = 1 − 1 = 0 P\{X=E(X)\}=1\Rightarrow P\{X^2=E^2(X)\}=1,D(X)=E(X^2)-E^2(X)=1-1=0 P{X=E(X)}=1P{X2=E2(X)}=1,D(X)=E(X2)E2(X)=11=0

    • 右向

      反证法,假设 P { X = E ( X ) } < 1 P\{X=E(X)\}<1 P{X=E(X)}<1,则 ∃ ε \exist \varepsilon ε,使得 P { ∣ X − E ( X ) ∣ ≥ ε } > 0 P\{|X-E(X)|\geq\varepsilon\}>0 P{XE(X)ε}>0.但根据[切比雪夫不等式](# 切比雪夫不等式), ∀ ε , P { ∣ X − E ( X ) ∣ ≥ ε } ≤ 0 ε = 0 \forall \varepsilon,P\{|X-E(X)|\geq\varepsilon\}\leq\frac{0}{\varepsilon}=0 ε,P{XE(X)ε}ε0=0,与假设矛盾。

标准化变量

在这里插入图片描述

特殊的方差

二项分布

0 − 1 0-1 01分布

E ( X ) = 0 × ( 1 − p ) + 1 × p = p , D ( X ) = p ( 1 − p ) E(X)=0\times (1-p)+1\times p=p,\quad D(X)=p(1-p) E(X)=0×(1p)+1×p=p,D(X)=p(1p)

一般

X = { 1 , A 在 第 k 次 试 验 中 发 生 0 , A 在 第 k 次 试 验 中 不 发 生 X= \begin{cases} 1, & A在第k次试验中发生\\ 0, & A在第k次试验中不发生 \end{cases} X={1,0,AkAk

X = X 1 + X 2 + ⋯ + X n X=X_1+X_2+\cdots +X_n X=X1+X2++Xn

相当于 n n n各相互独立且服从以 p p p为参数的 0 − 1 0-1 01分布的随机变量之和,于是
E ( X ) = E ( ∑ X i ) = ∑ ( E ( X i ) ) = n p , D ( X ) = D ( ∑ X i ) = ∑ ( D ( X i ) ) = n p ( 1 − p ) E(X)=E(\sum X_i)=\sum(E(X_i))=np,D(X)=D(\sum X_i)=\sum(D(X_i))=np(1-p) E(X)=E(Xi)=(E(Xi))=np,D(X)=D(Xi)=(D(Xi))=np(1p)

泊松分布

第一个等号为了凑阶乘
E ( X 2 ) = E ( X ( X − 1 ) + X ) = E ( X ( X − 1 ) ) + E ( X ) = ∑ k = 0 + ∞ k ( k − 1 ) λ k k ! e − λ + λ = λ 2 e − λ ∑ k = 2 + ∞ λ k − 2 ( k − 2 ) ! + λ = λ 2 e − λ ⋅ e λ + λ = λ 2 + λ \begin{aligned} E(X^2) &= E(X(X-1)+X) = E(X(X-1))+E(X) \\ &= \sum_{k=0}^{+\infin} k(k-1)\frac{\lambda^k}{k!} e^{-\lambda}+\lambda \\ &= \lambda^2 e^{-\lambda} \sum_{k=2}^{+\infin} \frac{\lambda^{k-2}}{(k-2)!}+\lambda \\ &= \lambda^2 e^{-\lambda}\cdot e^\lambda +\lambda \\ &= \lambda^2+\lambda \end{aligned} E(X2)=E(X(X1)+X)=E(X(X1))+E(X)=k=0+k(k1)k!λkeλ+λ=λ2eλk=2+(k2)!λk2+λ=λ2eλeλ+λ=λ2+λ

D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 = λ 2 + λ − λ 2 = λ D(X)=E(X^2)-[E(X)]^2=\lambda^2+\lambda-\lambda^2=\lambda D(X)=E(X2)[E(X)]2=λ2+λλ2=λ

正态分布

X ∼ N ( 0 , 1 ) X\sim N(0,1) XN(0,1)

E ( Z ) = 1 2 π ∫ − ∞ + ∞ t e − t 2 / 2 d t = 0 D ( Z ) = E ( Z 2 ) = 1 2 π ∫ − ∞ + ∞ t 2 e − t 2 / 2 d t = − 1 2 π t e − t 2 / 2 ∣ − ∞ + ∞ + 1 2 π ∫ − ∞ + ∞ e − t 2 / 2 d t = 1 + 0 = 1 \begin{aligned} E(Z) &= \frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin} te^{-t^2/2}{\rm d}t=0 \\ D(Z) &= E(Z^2) \\ &= \frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin} t^2e^{-t^2/2}{\rm d}t \\ &= \frac{-1}{\sqrt{2\pi}}te^{-t^2/2}|_{-\infin}^{+\infin}+\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin} e^{-t^2/2}{\rm d}t \\ &= 1+0=1 \end{aligned} E(Z)D(Z)=2π 1+tet2/2dt=0=E(Z2)=2π 1+t2et2/2dt=2π 1tet2/2++2π 1+et2/2dt=1+0=1

X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2)

由于 X = μ + σ Z X=\mu+\sigma Z X=μ+σZ
E ( X ) = E ( μ + σ Z ) = μ D ( x ) = D ( μ + σ Z ) = D ( σ Z ) = σ 2 D ( Z ) = σ 2 \begin{aligned} E(X) &= E(\mu+\sigma Z) = \mu \\ D(x) &= D(\mu+\sigma Z) = D(\sigma Z) = \sigma^2 D(Z)=\sigma^2 \end{aligned} E(X)D(x)=E(μ+σZ)=μ=D(μ+σZ)=D(σZ)=σ2D(Z)=σ2
由此可证正态分布的线性不变性。

切比雪夫不等式

P { ∣ X − μ ∣ ≥ ε } ≤ σ 2 ε 2 P\{|X-\mu|\geq\varepsilon\}\leq \frac{\sigma^2}{\varepsilon^2} P{Xμε}ε2σ2

证明

P { ∣ X − μ ∣ ≥ ε } = ∫ ∣ x − μ ∣ ≥ ε f ( x ) d x ≤ ∫ ∣ x − μ ∣ ≥ ε ∣ x − μ ∣ 2 ε 2 f ( x ) d x ≤ 1 ε 2 ∫ − ∞ + ∞ ∣ x − μ ∣ 2 f ( x ) d x = σ 2 ε 2 \begin{aligned} P\{|X-\mu|\geq \varepsilon\} &= \int_{|x-\mu|\geq \varepsilon} f(x){\rm d}x \\ &\leq \int_{|x-\mu|\geq \varepsilon} \frac{|x-\mu|^2}{\varepsilon^2}f(x){\rm d}x \\ &\leq \frac{1}{\varepsilon^2}\int_{-\infin}^{+\infin}|x-\mu|^2 f(x){\rm d}x = \frac{\sigma^2}{\varepsilon^2} \end{aligned} P{Xμε}=xμεf(x)dxxμεε2xμ2f(x)dxε21+xμ2f(x)dx=ε2σ2

变式

P { ∣ X − μ ∣ ≤ ε } ≥ 1 − σ 2 ε 2 P\{|X-\mu|\leq\varepsilon\}\geq 1-\frac{\sigma^2}{\varepsilon^2} P{Xμε}1ε2σ2

协方差与相关系数

刻画不独立的随机变量之间的关系: Y Y Y如何随 X X X的变化而变化。

X = E X , Y = E Y X=EX,Y=EY X=EX,Y=EY分割的四个“象限”中,一三象限意味着 ( X − E X ) ( Y − E Y ) > 0 (X-EX)(Y-EY)>0 (XEX)(YEY)>0,二四象限意味着 ( X − E X ) ( Y − E Y ) < 0 (X-EX)(Y-EY)<0 (XEX)(YEY)<0 X , Y X,Y X,Y图像落在各个象限中的面积的“权重”可以用 E ( X − E X ) ( Y − E Y ) E(X-EX)(Y-EY) E(XEX)(YEY)衡量。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

协方差

C o v ( X , Y ) = E [ ( X − E X ) ( Y − E Y ) ] {\rm Cov}(X,Y)=E[(X-EX)(Y-EY)] Cov(X,Y)=E[(XEX)(YEY)]

性质

  1. X , Y X,Y X,Y相互独立,则 C o v ( X , Y ) = 0 {\rm Cov}(X,Y)=0 Cov(X,Y)=0

    逆命题不成立:独立是比相关更强的条件

  2. C o v ( X , Y ) = C o v ( Y , X ) {\rm Cov}(X,Y)={\rm Cov}(Y,X) Cov(X,Y)=Cov(Y,X)

  3. D ( X ) = C o v ( X , X ) {\rm D}(X)={\rm Cov}(X,X) D(X)=Cov(X,X)

    • C o v ( X , a ) = 0 {\rm Cov}(X,a)=0 Cov(X,a)=0

      任意随机变量不随一个常数的变化而变化

    • C o v ( a X + b , c Y + d ) = a c C o v ( X , Y ) {\rm Cov}(aX+b,cY+d)=ac{\rm Cov}(X,Y) Cov(aX+b,cY+d)=acCov(X,Y)

      左右平移不影响方差和协方差,只影响期望(因为要中心化)

  4. 协方差的常用计算方法
    C o v ( X , Y ) = E ( X Y ) − E X E Y {\rm Cov}(X,Y)=E(XY)-EXEY Cov(X,Y)=E(XY)EXEY

    但正态分布用定义计算更方便,因为本就要去中心化

  5. C o v ( X + Y , Z ) = C o v ( X , Z ) + C o v ( Y , Z ) {\rm Cov}(X+Y,Z)={\rm Cov}(X,Z)+{\rm Cov}(Y,Z) Cov(X+Y,Z)=Cov(X,Z)+Cov(Y,Z)

    C o v ( a X 1 + b X 2 , c Y 1 + d Y 2 ) = a c C o v ( X 1 , Y 1 ) + a d C o v ( X 1 , Y 2 ) + b c C o v ( X 2 , Y 1 ) + b d C o v ( X 2 , Y 2 ) {\rm Cov}(aX_1+bX_2,cY_1+dY_2)=ac{\rm Cov}(X_1,Y_1)+ad{\rm Cov}(X_1,Y_2)+bc{\rm Cov}(X_2,Y_1)+bd{\rm Cov}(X_2,Y_2) Cov(aX1+bX2,cY1+dY2)=acCov(X1,Y1)+adCov(X1,Y2)+bcCov(X2,Y1)+bdCov(X2,Y2)

  6. D ( X ± Y ) = D ( X ) + D ( Y ) + 2 C o v ( X , Y ) {\rm D}(X\pm Y)={\rm D}(X)+{\rm D}(Y)+2{\rm Cov}(X,Y) D(X±Y)=D(X)+D(Y)+2Cov(X,Y)

相关系数

为了消除量纲,对随机变量进行标准化,使之称为均值为0、方差为1的标准化随机变量。
ρ X Y = C o r r ( X , Y ) = C o v ( X ∗ , Y ∗ ) = C o v ( X , Y ) D X D Y \rho_{XY}={\rm Corr}(X,Y)={\rm Cov}(X^*,Y^*)=\frac{{\rm Cov}(X,Y)}{\sqrt{DX}\sqrt{DY}} ρXY=Corr(X,Y)=Cov(X,Y)=DX DY Cov(X,Y)
其中,
X ∗ = X − E X D X , Y ∗ = Y − E Y D Y X^*=\frac{X-EX}{\sqrt{DX}},Y^*=\frac{Y-EY}{\sqrt{DY}} X=DX XEX,Y=DY YEY

定理

相关系数是衡量两个随机变量之间的线性关系的重要指标。

  1. ∣ ρ X Y ∣ ≤ 1 |\rho_{XY}|\leq 1 ρXY1

  2. ∣ ρ X Y = 1 ∣ |\rho_{XY}=1| ρXY=1的充要条件是,存在常数 a , b a,b a,b,使得
    P { Y = a X + b } = 1 P\{Y=aX+b\}=1 P{Y=aX+b}=1

概括起来,

在这里插入图片描述

其中的不相关仅指不线性相关

对于二维正态随机变量 ( X , Y ) (X,Y) (X,Y)而言, X , Y X,Y X,Y不相关和相互独立等价 ρ = ρ X Y \rho=\rho_{XY} ρ=ρXY)。

X , Y X,Y X,Y各自服从正态分布,事实上推不出 ( X , Y ) (X,Y) (X,Y)满足联合正态,所以不能推出不相关等价于独立。

C a u c h y − S c h w a r z {\rm Cauchy-Schwarz} CauchySchwarz不等式

∣ E ( X − E X ) ( Y − E Y ) ∣ 2 ≤ D X ⋅ D Y |E(X-EX)(Y-EY)|^2\leq DX\cdot DY E(XEX)(YEY)2DXDY

一般地,设下面涉及的数学期望都存在,则
∣ E ( X Y ) 2 ∣ ≤ E ( X 2 ) E ( Y 2 ) |E(XY)^2|\leq E(X^2)E(Y^2) E(XY)2E(X2)E(Y2)

证明

ρ X Y = C o v ( X , Y ) D X D Y ≤ 1 ⇒ C o v ( X , Y ) 2 ≤ D X ⋅ D Y \rho_{XY}=\frac{{\rm Cov}(X,Y)}{\sqrt{DX}\sqrt{DY}}\leq 1 \\ \Rightarrow {\rm Cov}(X,Y)^2\leq DX^\cdot DY ρXY=DX DY Cov(X,Y)1Cov(X,Y)2DXDY

矩和其他数字特征

概念

原点矩 μ k \mu_k μk

E ( X k ) , k = 1 , 2 , ⋯ E(X^k),\quad k=1,2,\cdots E(Xk),k=1,2,

X X X k k k阶原点矩,简称 k k k阶矩。

混合矩

E ( X k Y l ) , k , l = 1 , 2 , ⋯ E(X^k Y^l),\quad k,l=1,2,\cdots E(XkYl),k,l=1,2,

X X X Y Y Y k + l k+l k+l阶混合矩。

中心矩 v k v_k vk

E { [ X − E ( X ) ] k } , k = 1 , 2 , ⋯ E\{[X-E(X)]^k\},\quad k=1,2,\cdots E{[XE(X)]k},k=1,2,

X X X k k k阶中心矩。

混合中心矩

E { [ X − E ( X ) ] k [ Y − E ( Y ) ] l } , k , l = 1 , 2 , ⋯ E\{[X-E(X)]^k[Y-E(Y)]^l\},\quad k,l=1,2,\cdots E{[XE(X)]k[YE(Y)]l},k,l=1,2,

X X X Y Y Y k + l k+l k+l阶混合中心矩。

性质

  1. μ 1 = E X , v 1 = 0 , v 2 = D X \mu_1=EX,v_1=0,v_2=DX μ1=EX,v1=0,v2=DX

  2. 直接展开,
    v k = ∑ i = 0 k C k i μ i ( − 1 ) k − i μ 1 k − i v_k=\sum_{i=0}^k C_k^i \mu_i(-1)^{k-i}\mu_1^{k-i} vk=i=0kCkiμi(1)kiμ1ki

  3. 通常用 v 3 v_3 v3度量随机变量的对称程度 v 3 v_3 v3越小越对称)

其他数字特征

系数

偏度系数

skewness
β s = v 3 σ 3 , σ = v 2 \beta_s=\frac{v_3}{\sigma^3},\sigma=\sqrt{v_2} βs=σ3v3,σ=v2
v 3 v_3 v3的基础上进行标准化,同样衡量随机变量的对称性。

在这里插入图片描述

峰度系数

kurtosis
β k = v 4 v 2 2 − 3 \beta_k=\frac{v_4}{v_2^2}-3 βk=v22v43
若设 X ∗ = X − E X D X X^*=\frac{X-EX}{\sqrt{DX}} X=DX XEX,则 β k = E [ ( X ∗ ) 4 ] − 3 \beta_k=E[(X^*)^4]-3 βk=E[(X)4]3.

在这里插入图片描述

变异系数

C v = v 2 μ 1 C_v=\frac{\sqrt{v_2}}{\mu_1} Cv=μ1v2

在这里插入图片描述

内部

分位数
中位数

在这里插入图片描述

极限定理

中心极限定理

客观背景

在客观实际中有许多随机变量,它们是由大量的相互独立的随机因素的综合影响所形成的。而其中每一个别因素在总的影响中所起的作用都是微小的。这种随机变量往往近似地服从正态分布。

例如二项分布、泊松分布、卡方分布等。

内容

称随机变量序列 { X n , n ≥ 1 } \{X_n,n\geq 1\} {Xn,n1}服从中心极限定理,若当 n → + ∞ n\rightarrow +\infin n+时,随机变量之和 S n = ∑ i = 1 n X i S_n=\sum_{i=1}^n X_i Sn=i=1nXi渐进服从正态分布

S − E S n D S n \frac{S-ES_n}{\sqrt{DS_n}} DSn SESn的分布函数 F n ( x ) F_n(x) Fn(x)收敛于 Φ ( x ) \Phi(x) Φ(x)

借用知乎老哥理解,

在这里插入图片描述

林德贝格-勒维中心极限定理

若随机变量序列独立同分布,数学期望为 μ \mu μ,方差为 σ 2 \sigma^2 σ2,则对任意实数 y y y
lim ⁡ n → ∞ P { ∑ k = 1 n X k − n μ σ n ≤ y } = Φ ( y ) \lim_{n\rightarrow \infin}P\{\frac{\sum_{k=1}^n X_k-n\mu}{\sigma\sqrt{n}}\leq y\}=\Phi(y) nlimP{σn k=1nXknμy}=Φ(y)

近似计算

P { a ≤ S n ≤ b } ≈ Φ ( b − n μ σ n ) − Φ ( a − n μ σ n ) P\{a\leq S_n\leq b\}\approx \Phi(\frac{b-n\mu}{\sigma\sqrt{n}})-\Phi(\frac{a-n\mu}{\sigma\sqrt{n}}) P{aSnb}Φ(σn bnμ)Φ(σn anμ)

德莫夫-拉普拉斯中心极限定理

对于二项分布,设 Y n ∼ b ( n , p ) Y_n\sim b(n,p) Ynb(n,p),则
lim ⁡ n → ∞ P { Y n − n p n p ( 1 − p ) } ≈ Φ ( y ) \lim_{n\rightarrow \infin}P\{\frac{Y_n-np}{\sqrt{np(1-p)}}\}\approx \Phi(y) nlimP{np(1p) Ynnp}Φ(y)

近似计算
修正

由于二项分布是离散分布,正态分布是连续分布,
P { k 1 ≤ Y n ≤ k 2 } = P { k 1 − 0.5 < Y n < k 2 + 0.5 } ≈ Φ ( k 2 + 0.5 − n p n p ( 1 − p ) ) − Φ ( k 1 − 0.5 − n p n p ( 1 − p ) ) P\{k_1\leq Y_n\leq k_2\}=P\{k_1-0.5<Y_n<k_2+0.5\} \approx \Phi(\frac{k_2+0.5-np}{\sqrt{np(1-p)}})-\Phi(\frac{k_1-0.5-np}{\sqrt{np(1-p)}}) P{k1Ynk2}=P{k10.5<Yn<k2+0.5}Φ(np(1p) k2+0.5np)Φ(np(1p) k10.5np)

大数定律

客观背景

随着试验次数的增加,事件发生的频率逐渐稳定于某个常数。类似地,大量测量值的算术平均值也具有上述稳定性。

概率收敛

设随机变量 X , X 1 , X 2 , ⋯ X,X_1,X_2,\cdots X,X1,X2,都定义在同一个概率空间中,如果 ∀ ϵ > 0 \forall \epsilon>0 ϵ>0,都有 lim ⁡ n → ∞ P ( ∣ X n − X ∣ ≥ ϵ ) = 0 \lim_{n\rightarrow \infin} P(|X_n-X|\geq \epsilon)=0 limnP(XnXϵ)=0成立,则称随机变量序列 X 1 , X 2 , ⋯ X_1,X_2,\cdots X1,X2,依概率收敛 X X X。通常记为 X n ⟶ P X X_n\stackrel{P}\longrightarrow X XnPX.

X n ⟶ P X X_n\stackrel{P}\longrightarrow X XnPX当且仅当 X n − X ⟶ P 0 X_n-X\stackrel{P}\longrightarrow 0 XnXP0.

内容

称随机变量序列 X 1 , X 2 , ⋯ X_1,X_2,\cdots X1,X2,服从大数定律,若
S n − E S n n ⟶ P 0 \frac{S_n-ES_n}{n}\stackrel{P}\longrightarrow 0 nSnESnP0

马尔可夫大数定律

Markov

若方差 D ( X i ) D(X_i) D(Xi)存在,且 M a r k o v {\rm Markov} Markov条件
lim ⁡ n → ∞ 1 n 2 D ( ∑ k = 1 n X k ) = 0 \lim_{n\rightarrow \infin} \frac{1}{n^2}D(\sum_{k=1}^n X_k)=0 nlimn21D(k=1nXk)=0
成立,则该随机变量序列服从大数定律。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值