微积分常用公式

一、基本导数公式

微积分常用公式

 

二、导数的四则运算法则

 

微积分常用公式
三、高阶导数的运算法则

微积分常用公式

四、基本初等函数的n阶导数公式

微积分常用公式
五、微分公式与微分运算法则

微积分常用公式

六、微分运算法则

微积分常用公式

七、基本积分公式

微积分常用公式
八、补充积分公式

微积分常用公式
九、下列常用凑微分公式

微积分常用公式

微积分常用公式

十、分部积分法公式

微积分常用公式
十一、第二换元积分法中的三角换元公式

微积分常用公式
十二、重要公式

微积分常用公式
十三、下列常用等价无穷小关系

微积分常用公式
十四、三角函数公式

微积分常用公式

微积分常用公式

微积分常用公式

十五、几种常见的微分方程

微积分常用公式

  • 108
    点赞
  • 642
    收藏
    觉得还不错? 一键收藏
  • 7
    评论
### 回答1: 泰勒公式是一种近似函数值的方法,它可以用来估算一个函数在某一点附近的值。 设函数f(x)在x=a处可导,那么它的n阶导数存在。我们可以用如下公式来近似函数f(x)在x=a附近的值: f(x) ≈ f(a) + f'(a)(x-a) + (f''(a)/2!) (x-a)^2 + ... + (f^(n)(a)/n!) (x-a)^n 这就是泰勒公式基本形式。可以看出,随着n的增大,泰勒公式的精度也会增高。 为了证明这个公式,我们可以使用泰勒公式基本形式来展开函数f(x): f(x) = f(a) + ∑(n=1,∞) (f^(n)(a)/n!) (x-a)^n 然后我们可以使用数学归纳法证明: 1.当n=0时,泰勒公式成立 2.假设当n=k时,泰勒公式成立 3.当n=k+1时, f(x) = f(a) + ∑(n=1,k) (f^(n)(a)/n!) (x-a)^n + (f^(k+1)(a)/(k+1)!) (x-a)^(k+1) ∑(n=1,k) (f^(n)(a)/n!) (x-a)^n 与 f(x)的差值为 R(k+1)(x) = (f^(k+1)(a)/(k+1)!) (x-a)^(k+1) 由于 f(a) = f(x) -R(k+1)(x) 成立 所以当n=k+1时,泰勒公式仍然成立。 所以,对于任意的正整数n,泰勒公式都成立 ### 回答2: 泰勒公式是用来近似表示一个函数在某个点附近的展开式。我们可以用微积分的方法来证明泰勒公式。 设函数f(x)在区间[a,b]上连续,在(a,b)内具有各阶导数,且f(x)的(n+1)阶导数在这个区间内连续。那么对于这个区间内的任意一点x,存在一个点ξ,保证: f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)²/2! + ... + fⁿ(a)(x-a)ⁿ/n! + Rⁿ(x) 其中Rⁿ(x)为Lagrange余项,可以表示为:Rⁿ(x) = (fⁿ⁺¹(ξ)(x-a)ⁿ⁺¹)/(n+1)! 为了证明泰勒公式,我们可以根据函数的导数定义和极限的性质进行推导。 首先,我们可以使用高阶导数的定义,对于x=a时,将函数f(x)进行泰勒展开。然后,使用导数定义的极限性质,我们可以得到展开式中各阶导数的表达式。 接着,我们用极限来证明Lagrange余项的存在性。我们可以构造一个辅助函数g(t),然后使用中值定理来证明在(a,b)内存在一个点ξ,使得Rⁿ(x)等于g(t)的极限。 最后,使用极限的性质以及泰勒级数的收敛性条件,我们可以得到泰勒公式的证明。根据展开式中各项的逐渐趋近于零,我们可以得到当n趋于无穷大时,Rⁿ(x)趋近于零,从而得到f(x)在a点附近的泰勒展开式。 综上所述,我们可以用微积分的方法证明了泰勒公式。 ### 回答3: 泰勒公式微积分中非常重要的一个公式,可以用来近似计算函数在某一点附近的值。现在我们用微积分的知识来证明泰勒公式。 假设函数f(x)在某一点a处连续,并且在开区间(a, b)上存在n+1阶导数。我们要证明泰勒公式: f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ... + f^n(a)(x-a)^n/n! + R_n(x) 其中R_n(x)是余项,表示泰勒多项式和原函数之差。 首先,我们定义一个辅助函数,称为Lagrange中值定理函数,记作g(t) = f(x) - P_n(x),其中P_n(x)表示泰勒多项式的和式。我们可以得到g(a) = 0,而g(x)在(a, b)上具有(n+1)阶导数。 根据Lagrange中值定理,我们可以找到一个介于x和a之间的数c,使得g'(c) = 0。同理,我们可以找到介于x和c之间的数d,使得g''(d) = 0。通过不断重复这个过程,我们可以找到介于x和a之间的一系列数,把它们依次命名为c1、c2、c3、...,使得g^n(cn) = 0。 现在,我们可以考虑余项R_n(x)。根据Lagrange中值定理,我们可以推导出: R_n(x) = g(x) = g^(n+1)(c_n+1)(x-a)^(n+1)/(n+1)! 由于g^(n+1)(c_n+1) = f^(n+1)(c_n+1) - P_n^(n+1)(c_n+1) = f^(n+1)(c_n+1) - 0 = f^(n+1)(c_n+1),其中P_n^(n+1)(c_n+1)表示泰勒多项式的高阶导数,由于是和式,高阶导数为0。 所以,我们得到: R_n(x) = f^(n+1)(c_n+1)(x-a)^(n+1)/(n+1)! 这样,我们通过微积分的知识证明了泰勒公式。这个公式在近似计算中具有广泛的应用,可以有效地帮助我们进行函数值的估计。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值