开源模型:小羊驼(Vicuna-13B),可达chatGPT九成效果。

参考链接:https://mp.weixin.qq.com/s/OK5NLLVSBLb-4QsnqGp45g


简要介绍

以 Meta 开源 LLaMA(直译为「大羊驼」)系列模型为起点,研究人员逐渐研发出基于LLaMA的Alpaca(羊驼)、Alpaca-Lora、Luotuo(骆驼)等轻量级类 ChatGPT 模型并开源。

近日,研究者们又提出了一个新的模型:Vicuna(小羊驼)。该模型基于LLaMA,参数量13B。Vicuna-13B 就是通过微调 LLaMA 实现了高性能的对话生成

有趣的是,在该模型的评测环节中,作者没有通过某种“标准化考试”来测定模型性能,而是让GPT-4当考官,看看 GPT-4 更倾向于 Vicuna-13B 还是其他基线模型的答案。结果显示,相比于现有的 SOTA 开源模型(LLaMA、Alpaca),GPT-4 在超过 90% 的问题中更倾向于 Vicuna,并且 Vicuna 在总分上达到了 ChatGPT 的 92%。

Vicuna(小羊驼)已开源,项目地址:https://github.com/lm-sys/FastChat
demo 地址:https://chat.lmsys.org/


PS:浅浅玩了一下。总结:虽然没有chatGPT厉害,但是也不能算差了吧!而且开源是真香:)
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

模型介绍

数据来源

Vicuna 使用从 ShareGPT 收集的用户共享数据对 LLaMA 模型进行微调。从 ShareGPT 收集了大约 7 万个对话。ShareGPT 是一个 ChatGPT 数据共享网站,用户会上传自己觉得有趣的 ChatGPT 回答。

在这里插入图片描述

模型评估方法

该研究创建了 80 个不同的问题,并利用 GPT-4 来初步评估模型的输出质量,其中将每个模型的输出组合成每个问题的单个 prompt。然后将 prompt 发送到 GPT-4,由 GPT-4 来根据有用性、相关性、准确性和细节来评估上述模型生成的答案质量。

在这里插入图片描述
下面是小羊驼-13B和其他模型的一些比较:
在这里插入图片描述

模型局限性

不擅长推理或数学任务,还有在输出信息的准确性和偏见等方面存在缺陷。

模型总体评价

作为一个开源模型,性能总体上可以达到 ChatGPT 的 90%,已经非常难得,并且成本较低,只需 300 美元。

<think>好的,我现在需要回答用户关于如何下载Vicuna-1.1-7B和Vicuna-1.1-13B模型检查点的问题。首先,我得回顾一下用户提供的引用内容,看看有没有相关的信息。 引用[2]提到,Llama-7b-hf和vicuna-7b-delta-v0合并成vicuna-7b-v0,并提到了Fastchat部署vicuna-7b-v1.3的博客。引用[3]则建议从源码安装如果有进一步定制需求,并提到下载Vicuna模型的步骤。用户现在需要的是Vicuna-1.1版本的检查点,尤其是7B和13B的模型。 首先,Vicuna模型通常需要基于原始的LLaMA权重进行合并,因为直接分发检查点可能涉及许可问题。所以用户可能需要先获得LLaMA的原始模型,然后应用Vicuna的delta权重。例如,Hugging Face上可能有delta文件,用户需要合并它们。不过,用户可能不清楚具体步骤,需要详细说明。 接下来,我需要确认Vicuna-1.1的下载方式是否有变化。根据FastChat的文档,可能提供了脚本来自动完成这个过程。例如,使用他们的工具下载delta并合并。需要检查是否有官方指引,或者参考博客中的方法。比如,用户提到的引用[3]中的步骤可能涉及克隆仓库、安装依赖,然后运行下载脚本。 另外,用户可能遇到的常见问题包括:如何获取LLaMA原始权重、合并时出现的问题、模型版本之间的差异等。需要提醒用户注意模型版本对应,比如Vicuna-1.1对应的LLaMA版本是否正确,以及合并后的验证步骤,比如使用FastChat的工具测试模型是否正常工作。 最后,生成相关问题需要考虑用户可能的后续需求,比如如何部署模型、优化性能,或者与其他模型比较等。确保问题覆盖下载后的使用步骤和潜在问题。</think>### 如何下载Vicuna-1.1-7B和Vicuna-1.1-13B模型检查点? 1. **确认模型来源与依赖** Vicuna是基于Meta的LLaMA模型通过增量训练(delta weights)生成的模型。由于LLaMA的原始权重需从Meta申请授权,Vicuna仅提供增量权重文件,需与LLaMA基础模型合并后才能使用[^3]。 2. **下载Vicuna增量权重** - 访问Hugging Face上的官方仓库(如[lmsys/vicuna-7b-delta-v1.1](https://huggingface.co/lmsys/vicuna-7b-delta-v1.1)和[lmsys/vicuna-13b-delta-v1.1](https://huggingface.co/lmsys/vicuna-13b-delta-v1.1))。 - 使用`git clone`或下载工具获取增量权重文件: ```bash git clone https://huggingface.co/lmsys/vicuna-7b-delta-v1.1 git clone https://huggingface.co/lmsys/vicuna-13b-delta-v1.1 ``` 3. **合并模型权重** 使用FastChat提供的工具合并LLaMA基础模型与增量权重: ```bash python -m fastchat.model.apply_delta \ --base /path/to/llama-7b \ --target /output/path/vicuna-7b-v1.1 \ --delta /path/to/vicuna-7b-delta-v1.1 ``` 替换路径为实际LLaMA模型和增量权重路径[^2][^3]。 4. **验证模型可用性** 使用FastChat测试生成效果: ```python from fastchat.model import load_model model, tokenizer = load_model("vicuna-7b-v1.1") response = model.generate("Hello!") print(response) ``` ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值