科学的价值读后感
初读此书,非常惊讶。因为是数学文化老师推荐的,原本以为会是有一些公式陪着一些讲解的工具的数学书,但是大致匆匆浏览完此书,与其说这是一本数学书,倒不如收更像是一本哲学书,把物理和数学上升到了哲学的高度去讲解。
本书大致分成三章,我比较感兴趣的是其中关于时间和空间以及科学的客观价值这些部分。
先从时间说起吧。记得前一段时间我去查了一道概率论的相关习题,接触到了测度这个概念,一维的测度的长度,二维的测度是面积,三位的测度是体积。那么对于时间来讲,时间的测度是什么,这可能是一个很难回答的问题,本书在时间的量度这一本书当中,并没有直接的回答这个问题,而是更让人难以理解的从measure time这里问题提出了两个难题:
心里感觉的时间是定性的时间,我们能把把它变换成定量的时间吗?我们能够把发生在不同世界的事实归之于同一个量度吗?简单的理解这两个问题就是为了找到一种感性和理性之间对于时间的一座桥梁或者说找到不同“基”表示的空间之间的线性变换。文章对于此的回答
是这样一座桥梁或者说“基”究竟存不存在根本就不重要,重要的是“有利”的原则,也就是说时间应该在以是力学方程式尽可能地简单来定义。因此普遍采用的方法只不过是更方便而已。个人认为其实这样并没有很好的解释时间的度量究竟何如的问题,但文章中有一句话“没有一种度量时间的方法比另一种更加的真实”。
对此,我来谈谈我对于时间度量的理解。还记得我之前提到测度,从一维到三维的测度,我们可以不做证明地类推出一个结论:如果用低维的测度去测量高维的信息,那么得到的信息,在大多数情况下是不完整的。关键就在维度的问题,根据哥德尔第一定理,任何自洽的系统当中,都存在不确定的东西。解决此类所谓不确定的问题,有一个方法就是站在更高的角度去看,下面一个例子:比如在为了求e-x平方的积分,我们直接积分是积不出来,但是可以用二重(高维)积分来去计算就可以得出答案。这个例子可能不是特别合适,但是至少我们知道了从高维的角度可以很容易解决低维里面一些非常棘手的问题。但是这和时间度量
又有什么关系呢?因为一维是长度,二维是面积,三维是体积,四维就是时间,这中说法在很多地方都会见到,但是我觉得这个说法是存在一个很严重的逻辑错误,因为很显然任何维度都存在一个计量所谓事情发生先后顺序的量度,这就是时间,或者这里你理解时间只不过是三维当中对于这种量度的定义,所以如果时间是本生是一种维度,那么任何n维度都会变成n+1维度。那么时间究竟是什么,通过以上的论述,很显然时间存在于各个维度当中,换句话说,时间是不受维度限制的。我们再把格局放大一点,也就是说时间是就是我前文所说到的不同维度之间的联系的桥梁。在本书中的一个思想就是说时间如何定义不太重要,重要的是任何情况的表达,所选取的度量应该是的表达最为简洁。但是这是人的思维,在处理一些问题的时候,我们经常要借用电脑,电脑在处理一些问题的时候,我们应该出找到通用的处理方式,如何找到这样一种通用的度量呢,根据之前的猜想这个度量就是时间。
说完了时间,我们来讲另一方面-空间,其实之前谈到时间的时候是通过维度来解释的,但是本书的作者在引入空间这一概念的引言里刚开始,就提出“我尤为强调,非欧几何学所引起的问题,而把其他比较难以研究的问题,例如有关维数的问题,几乎完全撇在一边。”
所以本书,是从无定形连续统说明的,我对这方面不是很了解,但是本书作者从另一个侧面欧式空间和非欧空间去解释了这一件事情,还提到了点与点的等价,和空间的等价。我简单的认为,就是不同维度下的线性变换。或者简化问题,或者换成另一个角度去理解他。值得注意的是,与处理时间时一样,本书作者空间与经验论当中也提到了与时间中类似的“有利
“条件,经验并没有像我们证明空间有三维,它只是向我们证明,把三维赋予空间时方便的,因为这样一来,在处理一些”轻击“时数目就会变得很少;
最后总结一下,本书当中,其实有很多地方我觉得很深奥难懂,也可能有翻译的问题,
语言风格可能时偏向与哲学,但是其中时间和空间的部分,结合之前自己的一些理解,我觉得真的相当精彩。