《科学的价值》读后感--时间与空间byrenhaofan

科学的价值读后感

初读此书,非常惊讶。因为是数学文化老师推荐的,原本以为会是有一些公式陪着一些讲解的工具的数学书,但是大致匆匆浏览完此书,与其说这是一本数学书,倒不如收更像是一本哲学书,把物理和数学上升到了哲学的高度去讲解。

       本书大致分成三章,我比较感兴趣的是其中关于时间和空间以及科学的客观价值这些部分。

       先从时间说起吧。记得前一段时间我去查了一道概率论的相关习题,接触到了测度这个概念,一维的测度的长度,二维的测度是面积,三位的测度是体积。那么对于时间来讲,时间的测度是什么,这可能是一个很难回答的问题,本书在时间的量度这一本书当中,并没有直接的回答这个问题,而是更让人难以理解的从measure time这里问题提出了两个难题:

心里感觉的时间是定性的时间,我们能把把它变换成定量的时间吗?我们能够把发生在不同世界的事实归之于同一个量度吗?简单的理解这两个问题就是为了找到一种感性和理性之间对于时间的一座桥梁或者说找到不同“基”表示的空间之间的线性变换。文章对于此的回答

是这样一座桥梁或者说“基”究竟存不存在根本就不重要,重要的是“有利”的原则,也就是说时间应该在以是力学方程式尽可能地简单来定义。因此普遍采用的方法只不过是更方便而已。个人认为其实这样并没有很好的解释时间的度量究竟何如的问题,但文章中有一句话“没有一种度量时间的方法比另一种更加的真实”。

对此,我来谈谈我对于时间度量的理解。还记得我之前提到测度,从一维到三维的测度,我们可以不做证明地类推出一个结论:如果用低维的测度去测量高维的信息,那么得到的信息,在大多数情况下是不完整的。关键就在维度的问题,根据哥德尔第一定理,任何自洽的系统当中,都存在不确定的东西。解决此类所谓不确定的问题,有一个方法就是站在更高的角度去看,下面一个例子:比如在为了求e-x平方的积分,我们直接积分是积不出来,但是可以用二重(高维)积分来去计算就可以得出答案。这个例子可能不是特别合适,但是至少我们知道了从高维的角度可以很容易解决低维里面一些非常棘手的问题。但是这和时间度量

又有什么关系呢?因为一维是长度,二维是面积,三维是体积,四维就是时间,这中说法在很多地方都会见到,但是我觉得这个说法是存在一个很严重的逻辑错误,因为很显然任何维度都存在一个计量所谓事情发生先后顺序的量度,这就是时间,或者这里你理解时间只不过是三维当中对于这种量度的定义,所以如果时间是本生是一种维度,那么任何n维度都会变成n+1维度。那么时间究竟是什么,通过以上的论述,很显然时间存在于各个维度当中,换句话说,时间是不受维度限制的。我们再把格局放大一点,也就是说时间是就是我前文所说到的不同维度之间的联系的桥梁。在本书中的一个思想就是说时间如何定义不太重要,重要的是任何情况的表达,所选取的度量应该是的表达最为简洁。但是这是人的思维,在处理一些问题的时候,我们经常要借用电脑,电脑在处理一些问题的时候,我们应该出找到通用的处理方式,如何找到这样一种通用的度量呢,根据之前的猜想这个度量就是时间。

       说完了时间,我们来讲另一方面-空间,其实之前谈到时间的时候是通过维度来解释的,但是本书的作者在引入空间这一概念的引言里刚开始,就提出“我尤为强调,非欧几何学所引起的问题,而把其他比较难以研究的问题,例如有关维数的问题,几乎完全撇在一边。”

所以本书,是从无定形连续统说明的,我对这方面不是很了解,但是本书作者从另一个侧面欧式空间和非欧空间去解释了这一件事情,还提到了点与点的等价,和空间的等价。我简单的认为,就是不同维度下的线性变换。或者简化问题,或者换成另一个角度去理解他。值得注意的是,与处理时间时一样,本书作者空间与经验论当中也提到了与时间中类似的“有利

“条件,经验并没有像我们证明空间有三维,它只是向我们证明,把三维赋予空间时方便的,因为这样一来,在处理一些”轻击“时数目就会变得很少;

       最后总结一下,本书当中,其实有很多地方我觉得很深奥难懂,也可能有翻译的问题,

语言风格可能时偏向与哲学,但是其中时间和空间的部分,结合之前自己的一些理解,我觉得真的相当精彩。

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
《芋道开发指南文档-2023-10-27更新》是针对软件开发者和IT专业人士的一份详尽的资源集合,旨在提供最新的开发实践、范例代码和最佳策略。这份2023年10月27日更新的文档集,包含了丰富的模板和素材,帮助开发者在日常工作中提高效率,保证项目的顺利进行。 让我们深入探讨这份文档的可能内容。"芋道"可能是一个开源项目或一个专业的技术社区,其开发指南涵盖了多个方面,例如: 1. **编程语言指南**:可能包括Java、Python、JavaScript、C++等主流语言的编码规范、最佳实践以及常见问题的解决方案。 2. **框架库的应用**:可能会讲解React、Vue、Angular等前端框架,以及Django、Spring Boot等后端框架的使用技巧和常见应用场景。 3. **数据库管理**:涵盖了SQL语言的基本操作,数据库设计原则,以及如何高效使用MySQL、PostgreSQL、MongoDB等数据库系统。 4. **版本控制**:详细介绍了Git的工作流程,分支管理策略,以及其他开发工具(如Visual Studio Code、IntelliJ IDEA)的集成。 5. **持续集成持续部署(CI/CD)**:包括Jenkins、Travis CI、GitHub Actions等工具的配置和使用,以实现自动化测试和部署。 6. **云服务容器化**:可能涉及AWS、Azure、Google Cloud Platform等云计算平台的使用,以及Docker和Kubernetes的容器化部署实践。 7. **API设计测试**:讲解RESTful API的设计原则,Swagger的使用,以及Postman等工具进行API测试的方法。 8. **安全性隐私保护**:涵盖OAuth、JWT认证机制,HTTPS安全通信,以及防止SQL注入、
该是一个在 Kaggle 上发布的数据集,专注于 2024 年出现的漏洞(CVE)信息。以下是关于该数据集的详细介绍:该数据集收集了 2024 年记录在案的各类漏洞信息,涵盖了漏洞的利用方式(Exploits)、通用漏洞评分系统(CVSS)评分以及受影响的操作系统(OS)。通过整合这些信息,研究人员和安全专家可以全面了解每个漏洞的潜在威胁、影响范围以及可能的攻击途径。数据主要来源于权威的漏洞信息平台,如美国国家漏洞数据库(NVD)等。这些数据经过整理和筛选后被纳入数据集,确保了信息的准确性和可靠性。数据集特点:全面性:涵盖了多种操作系统(如 Windows、Linux、Android 等)的漏洞信息,反映了不同平台的安全状况。实用性:CVSS 评分提供了漏洞严重程度的量化指标,帮助用户快速评估漏洞的优先级。同时,漏洞利用信息(Exploits)为安全研究人员提供了攻击者可能的攻击手段,有助于提前制定防御策略。时效性:专注于 2024 年的漏洞数据,反映了当前网络安全领域面临的新挑战和新趋势。该数据集可用于多种研究和实践场景: 安全研究:研究人员可以利用该数据集分析漏洞的分布规律、攻击趋势以及不同操作系统之间的安全差异,为网络安全防护提供理论支持。 机器学习数据分析:数据集中的结构化信息适合用于机器学习模型的训练,例如预测漏洞的 CVSS 评分、识别潜在的高危漏洞等。 企业安全评估:企业安全团队可以参考该数据集中的漏洞信息,结合自身系统的实际情况,进行安全评估和漏洞修复计划的制定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值