【bzoj 1004】[HNOI2008]Cards(burnside 引理)

49 篇文章 0 订阅
10 篇文章 0 订阅

1004: [HNOI2008]Cards

Time Limit: 10 Sec   Memory Limit: 162 MB
Submit: 2801   Solved: 1673
[ Submit][ Status][ Discuss]

Description

  小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有
多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方
案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.
两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗
成另一种.Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).

Input

  第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<100)。n=Sr+Sb+Sg。
接下来 m 行,每行描述一种洗牌法,每行有 n 个用空格隔开的整数 X1X2...Xn,恰为 1 到 n 的一个排列,
表示使用这种洗牌法,第 i位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代
替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态。

Output

  不同染法除以P的余数

Sample Input

1 1 1 2 7
2 3 1
3 1 2

Sample Output

2

HINT

  有2 种本质上不同的染色法RGB 和RBG,使用洗牌法231 一次可得GBR 和BGR,使用洗牌法312 一次 可得BRG 

和GRB。

100%数据满足 Max{Sr,Sb,Sg}<=20。

Source

[ Submit][ Status][ Discuss]

【题解】【Burnside 引理】

有m个置换k种颜色,所有本质不同的染色方案数就是每种置换的不变元素的个数的平均数。所谓不变元素就是一种染色方案经过置换变换后和没变化之前一样。所以现在就是需要求出不变元素,同时还要满足各种颜色数量的限制。置换的循环在不变元素中一定是一个颜色,然后可以求一个三维的01背包的方案数。而最后的除法需要利用扩展欧几里得求乘法的逆元。(转自:http://hzwer.com/3222.html

Burnside 引理de公式:L=1/|G| [c1(a1)+...+cg(ag)] =1/|g| [c1(a1)+..+cg(ag)]

(将除法改为求逆元)


#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int sr,sb,sg,m,n,mod;
int f[70][70][70],a[70][70],d[70],ans;
bool p[70];

inline int dp(int k)
{
	memset(p,0,sizeof(p));
	int sum=0,i,j,h,l;
	for(i=1;i<=n;++i)
	 if(!p[i])
	  {
	  	j=i; d[++sum]=0; 
	  	while(!p[j])
	  	 {
	  	 	d[sum]++;
	  	 	p[j]=1; j=a[k][j];
		   }
	  }
	memset(f,0,sizeof(f));
	f[0][0][0]=1;
	for(l=1;l<=sum;++l)
	 for(i=sr;i>=0;--i)
	  for(j=sb;j>=0;--j)
	   for(h=sg;h>=0;--h)
	    {
	   	 if(i>=d[l]) f[i][j][h]=(f[i][j][h]+f[i-d[l]][j][h])%mod;
	   	 if(j>=d[l]) f[i][j][h]=(f[i][j][h]+f[i][j-d[l]][h])%mod;
	   	 if(h>=d[l]) f[i][j][h]=(f[i][j][h]+f[i][j][h-d[l]])%mod;
	    }
	return f[sr][sb][sg];
}
void exgcd(int a,int b,int &x,int &y)
{
	if(!b) {x=1,y=0; return;}
	exgcd(b,a%b,x,y);
	int t=x; x=y; y=t-a/b*y; 
}

int main()
{
	int i,j;
	scanf("%d%d%d%d%d",&sr,&sb,&sg,&m,&mod);
	n=sr+sb+sg;
	for(i=1;i<=m;++i)
	 for(j=1;j<=n;++j)
	  scanf("%d",&a[i][j]);
	++m;
	for(i=1;i<=n;++i) a[m][i]=i;
	for(i=1;i<=m;++i) 
	   ans=(ans+dp(i))%mod;
	int x,y;
	exgcd(m,mod,x,y);
	while(x<=0) x+=mod,y-=m;
	printf("%d\n",ans*x%mod);
	return 0;  
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值