tan(x)的四阶麦克劳林级数

本文探讨了如何利用泰勒级数的高级技巧,如换元、求导、积分等,针对特定函数的四阶展开,以sin(x)和cos(x)为例,通过相除求得特定函数的麦克劳林级数。展示了数学在计算中的实际应用和级数理论的拓展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

除了通用的泰勒级数公式(即连续求导),我们还可以基于其他级数,进行换元、求导、积分、相加、相减、相乘、相除等操作。

例如  tan(x)=\frac{sin(x)}{cos(x)}

sin(x)=0+x-\frac{1}{3!}x^{3}+..=0+x-\frac{1}{6}x^{3}+..

cos(x)=1-\frac{1}{2!}x^{2}+\frac{1}{4!}x^{4}+..=1-\frac{1}{2}x^{2}+\frac{1}{24}x^{4}+..

因为只求四阶,我们只保留sin(x)和cos(x)的4阶内级数

然后进行相除

                                               x+\frac{1}{3}x^{3}

1-\frac{1}{2}x^{2}+\frac{1}{24}x^{4}+.. \int \overline{0+x-\frac{1}{6}x^{3}+..}

                                                x-\frac{1}{2}x^{3}+\frac{1}{24}x^{5}+..

                                                \overline{0+\frac{1}{3}x^{3} }

所以

tan(x)的四阶麦克劳林级数为x+\frac{1}{3}x^{3}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rgbhi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值