代码分享│基于灰狼算法优化深度置信网络(GWO-DBN)的回归拟合预测(优化参数多,评价指标全,出图多)

随着人工智能技术的快速发展,深度学习已经成为解决复杂问题的热门方法之一。深度置信网络(DBN)作为深度学习中应用比较广泛的一种算法,被广泛应用于分类和回归预测等问题中。然而,DBN的训练过程通常需要大量的时间和计算资源,因此如何提高DBN的训练效率成为一个重要的研究方向。

近年来,灰狼算法(Grey Wolf Optimizer,GWO)作为一种新兴的优化算法,受到了广泛的关注。GWO模拟了灰狼群体的捕食行为,通过模拟狼群的协作和竞争来优化问题的解,可用来优化DBN的多个超参数(隐藏层层数,隐藏层节点,反向学习率,迭代次数)。

为此,本文将灰狼算法 (GWO)与深度置信网络 (DBN) 相结合,采用GWO-DBN 结合智能算法与深度学习模型进行多输入变量的回归拟合预测,具有以下特点:

准确性高:GWO 算法可以有效地优化 DBN 模型的参数,提高故障诊断的准确性。

鲁棒性强:DBN 模型可以捕获数据中的非线性模式,并对扰动和异常值具有较强的鲁棒性。

实现效果好:GWO-DBN 算法的回归预测效果相对较好,易于理解,已成功应用于该模型可应用于光伏发电、股票价格预测、房价预测、客流量预测等多个领域,通过对大量的历史数据进行学习和训练,GWO-DBN可以捕捉到数据中的潜在模式和规律,并用于未来的预测,应用效果较好。

部分代码展示:

%% 训练模型

dbn = dbnsetup(dbn, p_train, opts); % 建立模型

dbn = dbntrain(dbn, p_train, opts); % 训练模型

%% 训练权重移植,添加输出层

nn = dbnunfoldtonn(dbn, outdim);

%% 反向调整网络

% ----- 参数修改时,请查看fun函数中的参数设置,并作出对应修改 ---------

opts.numepochs = epochs; % 反向微调次数

opts.batchsize = 12; % 每次反向微调样本数 需满足:(M / batchsize = 整数)

nn.activation_function = 'sigm'; % 激活函数

nn.learningRate = lr; % 学习率

nn.momentum = 0.5; % 动量参数

nn.scaling_learningRate = 1; % 学习率的比例因子

实验效果展示(评价指标全,出图多):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值