最新7+非肿瘤生信,机器学习筛选关键基因+样本验证。目前机器学习已经替代WGCNA成为筛选关键基因方法。非肿瘤生信分析欢迎咨询!

影响因子:7.31

关于非肿瘤生信,我们也解读过很多

目前非肿瘤中结合热点基因集,免疫浸润,机器学习,分型的分析是比较先进的。有需要的分析的朋友欢迎交流!!

研究概述:

心房颤动(AF)是缺血性卒中的主要危险因素,而仅凭临床特征和神经影像学表现都不能可靠地分类心源性栓塞性卒中(CE)。本研究旨在确定在心房颤动相关心源性栓塞性卒中(AF-CE)患者中具有诊断价值的新型潜在生物标志物,区分AF-CE与其他类型缺血性卒中。

研究者对AF和CE的共同的DEGs进行综合分析后,使用LASSO和SVM-RFE两种机器学习算法确定了三个诊断标志物C1QC、VSIG4 和 CFD。然后采用RT-qPCR分析了3种诊断标志物的表达水平,发现水平高低可用于区分AF-CE患者与正常对照组,并可有效区分AF-CE和LAA卒中。之后使用临床样本验证结果,并使用ROC曲线分析确定这些特征标志基因的诊断价值。最终得出C1QC、VSIG4 和 CFD 可作为 AF-CE 的独立因素和诊断标准。最后建立了列线图模型、开发了在线预测工具。

研究结果:

一、差异表达基因的鉴定

1. 在与CE相关的GSE58294 (GPL570)数据集中,与对照组相比,在中风后三个时间点(<3 h(图1a)、5 h(图1b)和24 h(图1c)分别筛选DEGs。同时,从GSE41177中获得13962个AF相关的DEGs (图1d)。

2. GSE58294数据集中不同时间点的DEGs结果的交集有418个DEGs (图1e)。该交集中的DEGs交叉得到316个AF-CE基因(图1f)。

3. 将GSE58294和GSE41177数据集合并为训练集,移除批处理效果后使用limma包获得13个AF-CE相关的DEGs基因(AP000525.9、POM121L9P、TIMM8A、MCEMP1、C1QC、LOC100996760、BCL2A1、S100A12、VSIG4、OLAH、ANKRD22、BMX、CFD),其中9个基因上调,4个基因下调(图1g)。

二、功能相关分析

1. 使用Metascape在线工具进行功能标注。结果表明:AF-CE相关的DEGs标志性富集于氧化应激诱导的衰老、氧化应激反应的调控、氧化应激反应的调控、细胞程序性死亡、上皮细胞增殖的调控、VEGFA-VEGFR2信号通路、补体和凝血级联、雌激素信号通路、snRNA 3’端加工、MHC II类蛋白复合物组装、细胞对生长因子刺激反应的调控、肌肉结构发育、白细胞介素-12的产生、癌症中的蛋白多糖、水杨酸与甘氨酸的偶联以及附肢形态发生(图2a)。

2. DO富集分析结果显示,AF-CE相关的DEGs主要与免疫介导的炎症性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值