Cui J, Chen Y, Chou W C, et al. An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer[J]. Nucleic acids research, 2010: gkq960.
材料:
160份材料来自52分男性,25份女性和3分缺失,均有癌症组织和癌旁组织。
考查数据:
随肿瘤分歧趋势变化的基因;胃癌中关键信号通路;胃癌和癌旁的差异全景
标志物筛选:
REF-SVM基于支持向量机的递归特征消除,28个基因的组合准确率最高:肿瘤95.9%,癌旁97.9%。
***预测136个基因的产物会分泌到血液中,找到18个可能的marker。(也是基于自建模型的预测)
筛选关键基因:1 基因功能——生物过程;2 基因功能——分子功能;3基因功能——细胞组分;4信号通路
筛选关键通路
随肿瘤分期趋势变化的基因
胃癌中关键信号通路
胃癌vs癌旁的差异全景
胃癌的中的性别差异
*支持向量机:“机(machine,机器)”实际上是一个算法。在机器学习领域,常把一些算法看 作是一个机器(又叫学习机器,或预测函数,或学习函数)。“支持向量”则是指训练集中的某些训练点的输入 xi 。它是一种有监督(有导师)学习方法,即已知训练点的类别,求训练点和类别之间的对应关系,以便将训练集按照类别分开,或者是预测新的训练点所对应的类 别。