一、K 凸函数的定义:
定义1
∀
a
,
b
>
0
\quad\forall~ a, b>0
∀ a,b>0
K
+
f
(
a
+
x
)
≥
f
(
x
)
+
a
{
f
(
x
)
−
f
(
x
−
b
)
b
}
K+f(a+x)\geq f(x)+a\Big\{\frac{f(x)-f(x-b)}{b}\Big\}
K+f(a+x)≥f(x)+a{bf(x)−f(x−b)}
定义2
∀
a
>
0
\quad\forall~ a>0
∀ a>0
K
+
f
(
a
+
x
)
−
f
(
x
)
−
a
f
′
(
x
)
≥
0
K+f(a+x)-f(x)-af'(x)\geq 0
K+f(a+x)−f(x)−af′(x)≥0
定义3
∀
0
<
μ
<
1
\quad\forall~ 0<\mu<1
∀ 0<μ<1
μ
f
(
x
1
)
+
(
1
−
μ
)
(
f
(
x
2
)
+
K
)
≥
f
(
μ
x
1
+
(
1
−
μ
)
x
2
)
\mu f(x_1)+(1-\mu)(f(x_2)+K)\geq f(\mu x_1+(1-\mu)x_2)
μf(x1)+(1−μ)(f(x2)+K)≥f(μx1+(1−μ)x2)
定义3 其实由定义1 改造而来,只要令 x 1 = x − b x_1=x-b x1=x−b, x 2 = x + a x_2=x+a x2=x+a, μ = a a + b \mu=\frac{a}{a+b} μ=a+ba 即可。
K凸函数保证了最优订货策略为 ( s , S ) (s,S) (s,S),关键靠两条性质:
- 当 x < s x<s x<s 时, f ( x ) f(x) f(x) 为非递增函数
- 当 s ≤ x 1 < x 2 s\leq x_1<x_2 s≤x1<x2 时,总有 f ( x 1 ) ≤ f ( x 2 ) + K f(x_1)\leq f(x_2)+K f(x1)≤f(x2)+K
还有一个 CK 凸函数,它针对能力约束问题,此时, 0 < a ≤ C 0<a\leq C 0<a≤C, 0 < b ≤ C 0<b\leq C 0<b≤C。
二、一个 K 凸函数图像:
K 凸的几何意义是:对于三个点
x
−
b
x-b
x−b,
x
x
x,
x
+
a
x+a
x+a,
(
x
−
b
,
f
(
x
−
b
)
)
(x-b,f(x-b))
(x−b,f(x−b)),
(
x
,
f
(
x
)
)
(x,f(x))
(x,f(x)) 的连线在
x
+
a
x+a
x+a 的值一定落在
f
(
x
+
a
)
+
K
f(x+a)+K
f(x+a)+K 下面。
三、 s s s, S S S 的定义
设 f f f 为在定义域 [ A , B ] [A, B] [A,B] 上的一个 K 凸函数, f ∗ f^\ast f∗ 为其在定义域内的最小值,
S
=
{
x
∣
f
(
x
)
=
f
∗
}
s
=
min
{
x
∣
f
(
x
)
≤
f
∗
+
K
,
x
≤
S
}
\begin{aligned} S&=\{x\mid f(x)=f^\ast\}\\ s&=\min\{x\mid f(x)\leq f^\ast+K, x\leq S\} \end{aligned}
Ss={x∣f(x)=f∗}=min{x∣f(x)≤f∗+K,x≤S}
注:
s
s
s 可能不在定义域内。
四、K-凸函数的相关性质
1. f ( x ) f(x) f(x) 在区间 [ A , s ] [A, s] [A,s] 上单调递减.
证明:当
x
<
s
x<s
x<s 时,根据
s
s
s 的定义,显然
f
(
x
)
>
f
(
S
)
+
K
f(x)>f(S)+K
f(x)>f(S)+K。令
x
+
a
=
S
x+a=S
x+a=S,则根据定义1 或定义 2,当
x
<
s
x<s
x<s 时,
a
f
′
(
x
)
≤
K
+
f
(
S
)
−
f
(
x
)
<
0
af'(x)\leq K+f(S)-f(x)<0
af′(x)≤K+f(S)−f(x)<0
因此
f
(
x
)
f(x)
f(x) 在区间
[
A
,
s
]
[A, s]
[A,s] 上单调递减。
2. 对任意 s < x 1 < x 2 s<x_1<x_2 s<x1<x2,都有 f ( x 2 ) + K ≥ f ( x 1 ) f(x_2)+K\geq f(x_1) f(x2)+K≥f(x1).
证明:
(1) 若
x
2
>
x
1
≥
S
x_2>x_1\geq S
x2>x1≥S 或
x
1
<
x
2
≤
S
x_1<x_2\leq S
x1<x2≤S, 在定义1 中令
x
−
b
=
S
x-b=S
x−b=S,
x
+
a
=
x
2
x+a=x_2
x+a=x2,
x
=
x
1
x=x_1
x=x1,得到:
K
+
f
(
x
2
)
−
f
(
x
1
)
−
(
x
2
−
x
1
)
{
f
(
x
1
)
−
f
(
S
)
x
1
−
S
}
≥
0
⇒
K
+
f
(
x
2
)
−
f
(
x
1
)
≥
(
x
2
−
x
1
)
{
f
(
x
1
)
−
f
(
S
)
x
1
−
S
}
⇒
K
+
f
(
x
2
)
−
f
(
x
1
)
≥
0
(
since
f
(
x
1
)
≥
f
(
S
)
)
\begin{aligned} &K+f(x_2)-f(x_1)-(x_2-x_1)\Big\{\frac{f(x_1)-f(S)}{x_1-S}\Big\}\geq 0\\ \Rightarrow~~&K+f(x_2)-f(x_1)\geq (x_2-x_1)\Big\{\frac{f(x_1)-f(S)}{x_1-S}\Big\}\\ \Rightarrow~~&K+f(x_2)-f(x_1)\geq 0\quad\big (\text{since}~~f(x_1)\geq f(S)\big ) \end{aligned}
⇒ ⇒ K+f(x2)−f(x1)−(x2−x1){x1−Sf(x1)−f(S)}≥0K+f(x2)−f(x1)≥(x2−x1){x1−Sf(x1)−f(S)}K+f(x2)−f(x1)≥0(since f(x1)≥f(S))
(2) 若
x
1
<
S
<
x
2
x_1<S<x_2
x1<S<x2,在定义1 中令
x
+
a
=
S
x+a=S
x+a=S,
x
−
b
=
s
x-b=s
x−b=s,
x
=
x
1
x=x_1
x=x1,得到:
K
+
f
(
S
)
−
f
(
x
1
)
−
(
S
−
x
1
)
{
f
(
x
1
)
−
f
(
s
)
x
1
−
s
}
≥
0
⇒
K
+
f
(
S
)
−
f
(
x
1
)
≥
(
S
−
x
1
)
{
f
(
x
1
)
−
K
−
f
(
S
)
x
1
−
s
}
(
根据s的定义
)
⇒
K
+
f
(
S
)
−
f
(
x
1
)
≥
0
(
since
s
<
x
1
<
S
)
⇒
K
+
f
(
x
2
)
−
f
(
x
1
)
≥
0
(
since
f
(
x
2
)
≥
f
(
S
)
)
\begin{aligned} &K+f(S)-f(x_1)-(S-x_1)\Big\{\frac{f(x_1)-f(s)}{x_1-s}\Big\}\geq 0\\ \Rightarrow~~&K+f(S)-f(x_1)\geq (S-x_1)\Big\{\frac{f(x_1)-K-f(S)}{x_1-s}\Big\}~~(\text{根据s的定义})\\ \Rightarrow~~& K+f(S)-f(x_1)\geq 0\quad\big (\text{since}~~s<x_1<S\big )\\ \Rightarrow~~&K+f(x_2)-f(x_1)\geq 0\quad\big (\text{since}~~f(x_2)\geq f(S)\big ) \end{aligned}
⇒ ⇒ ⇒ K+f(S)−f(x1)−(S−x1){x1−sf(x1)−f(s)}≥0K+f(S)−f(x1)≥(S−x1){x1−sf(x1)−K−f(S)} (根据s的定义)K+f(S)−f(x1)≥0(since s<x1<S)K+f(x2)−f(x1)≥0(since f(x2)≥f(S))
□
\Box
□
对任意 s < x 1 < x 2 s<x_1<x_2 s<x1<x2,当然也满足 K-凸条件: K + f ( x 2 ) ≥ f ( x 1 ) + ( x 2 − x 1 ) f ( x 1 ) − f ( x 1 − b ) b K+f(x_2)\geq f(x_1)+(x_2-x_1)\frac{f(x_1)-f(x_1-b)}{b} K+f(x2)≥f(x1)+(x2−x1)bf(x1)−f(x1−b)
3. 在定义域 [ A , B ] [A, B] [A,B] 上的最优订货策略为 ( s , S ) (s, S) (s,S), 即:
g ( x ) = inf y ≥ x , A ≤ y ≤ B [ K δ ( y − x ) + f ( y ) ] = { f ( S ) + K x < s f ( x ) x ≥ s \begin{aligned} g(x)=&\inf_{y\geq x, A\leq y\leq B} \big [K\delta (y-x)+f(y)\big ]\\ =&\begin{cases} f(S)+K\quad &x<s\\ f(x)\quad &x\geq s \end{cases} \end{aligned} g(x)==y≥x,A≤y≤Binf[Kδ(y−x)+f(y)]{f(S)+Kf(x)x<sx≥s
需要证明 当
f
(
x
)
f(x)
f(x) 为 k 凸函数时,
g
(
x
)
g(x)
g(x) 为 k 凸函数。
证明:我们需证明
g
(
x
)
g(x)
g(x) 满足定义1. 对任意三个点
x
−
b
x-b
x−b,
x
x
x,
x
+
a
x+a
x+a
一共有以下四种情况:
(1) 若
x
−
b
≥
s
x-b\geq s
x−b≥s 时,
K
+
g
(
x
+
a
)
−
g
(
x
)
−
a
{
g
(
x
)
−
g
(
x
−
b
)
b
}
=
K
+
f
(
x
+
a
)
−
f
(
x
)
−
a
{
g
(
x
)
−
g
(
x
−
b
)
b
}
\begin{aligned} &K+g(x+a)-g(x)-a\Big\{\frac{g(x)-g(x-b)}{b}\Big\}\\ =&K+f(x+a)-f(x)-a\Big\{\frac{g(x)-g(x-b)}{b}\Big\} \end{aligned}
=K+g(x+a)−g(x)−a{bg(x)−g(x−b)}K+f(x+a)−f(x)−a{bg(x)−g(x−b)}
上式就是
f
(
x
)
f(x)
f(x) K凸函数的定义,显然成立。
(2) 若
x
+
a
<
s
x+a< s
x+a<s 时,
K
+
g
(
x
+
a
)
−
g
(
x
)
−
a
{
g
(
x
)
−
g
(
x
−
b
)
b
}
=
K
+
f
(
S
)
+
K
−
f
(
S
)
−
K
−
a
{
f
(
S
)
+
K
−
f
(
S
)
−
K
b
}
=
0
\begin{aligned} &K+g(x+a)-g(x)-a\Big\{\frac{g(x)-g(x-b)}{b}\Big\}\\ =&K+f(S)+K-f(S)-K-a\Big\{\frac{f(S)+K-f(S)-K}{b}\Big\}\\ =&0 \end{aligned}
==K+g(x+a)−g(x)−a{bg(x)−g(x−b)}K+f(S)+K−f(S)−K−a{bf(S)+K−f(S)−K}0
上式显然是 K凸函数。
(3) 若
x
−
b
<
x
<
s
<
x
+
a
x-b<x<s<x+a
x−b<x<s<x+a 时,
K
+
g
(
x
+
a
)
−
g
(
x
)
−
a
{
g
(
x
)
−
g
(
x
−
b
)
b
}
=
K
+
f
(
x
+
a
)
−
f
(
S
)
−
K
−
a
{
f
(
S
)
+
K
−
f
(
S
)
−
K
b
}
=
f
(
x
+
a
)
−
f
(
S
)
≥
0
\begin{aligned} &K+g(x+a)-g(x)-a\Big\{\frac{g(x)-g(x-b)}{b}\Big\}\\ =&K+f(x+a)-f(S)-K-a\Big\{\frac{f(S)+K-f(S)-K}{b}\Big\}\\ =&f(x+a)-f(S)\geq 0 \end{aligned}
==K+g(x+a)−g(x)−a{bg(x)−g(x−b)}K+f(x+a)−f(S)−K−a{bf(S)+K−f(S)−K}f(x+a)−f(S)≥0
为 K凸函数。
(4) 若
x
−
b
<
s
<
x
x-b<s<x
x−b<s<x 时,
K
+
g
(
x
+
a
)
−
g
(
x
)
−
a
{
g
(
x
)
−
g
(
x
−
b
)
b
}
=
K
+
f
(
x
+
a
)
−
f
(
x
)
−
a
{
f
(
x
)
−
f
(
S
)
−
K
b
}
≥
K
+
f
(
x
+
a
)
−
f
(
x
)
−
a
{
f
(
x
)
−
f
(
s
)
b
}
\begin{aligned} &K+g(x+a)-g(x)-a\Big\{\frac{g(x)-g(x-b)}{b}\Big\}\\ =&K+f(x+a)-f(x)-a\Big\{\frac{f(x)-f(S)-K}{b}\Big\}\\ \geq &K+f(x+a)-f(x)-a\Big\{\frac{f(x)-f(s)}{b}\Big\} \end{aligned}
=≥K+g(x+a)−g(x)−a{bg(x)−g(x−b)}K+f(x+a)−f(x)−a{bf(x)−f(S)−K}K+f(x+a)−f(x)−a{bf(x)−f(s)}
根据性质2,
K
+
f
(
x
+
a
)
−
f
(
x
)
≥
0
K+f(x+a)-f(x)\geq 0
K+f(x+a)−f(x)≥0。
若
f
(
x
)
≤
f
(
s
)
f(x)\leq f(s)
f(x)≤f(s),上式显然大于等于零。
若
f
(
x
)
<
f
(
s
)
f(x)< f(s)
f(x)<f(s),根据性质 1,可以得出
x
>
s
x>s
x>s,又因为
x
−
b
<
s
x-b<s
x−b<s,即
b
>
x
−
s
b>x-s
b>x−s,上述表达式可以变为:
K
+
f
(
x
+
a
)
−
f
(
x
)
−
a
{
f
(
x
)
−
f
(
s
)
b
}
≥
K
+
f
(
x
+
a
)
−
f
(
x
)
−
a
{
f
(
x
)
−
f
(
s
)
x
−
s
}
\begin{aligned} &K+f(x+a)-f(x)-a\Big\{\frac{f(x)-f(s)}{b}\Big\}\\ \geq &K+f(x+a)-f(x)-a\Big\{\frac{f(x)-f(s)}{x-s}\Big\} \end{aligned}
≥K+f(x+a)−f(x)−a{bf(x)−f(s)}K+f(x+a)−f(x)−a{x−sf(x)−f(s)}
刚好为 K凸函数的定义,因此也大于等于零。
综合以上,在四种情况下, g ( x ) g(x) g(x) 均为 K 凸函数。 □ \Box □
4. 若 g g g 为一个 K-凸函数,则 f f f 也是一个 K-凸函数,其中 f f f 为
f ( x ) = min x ≤ y ≤ x + R g ( y ) f(x)=\min_{x\leq y\leq x+R}g(y) f(x)=x≤y≤x+Rming(y)
证明:
我们需要证明
f
(
μ
x
1
+
(
1
−
μ
)
x
2
)
≤
μ
f
(
x
1
)
+
(
1
−
μ
)
(
f
(
x
2
)
+
K
)
f(\mu x_1+(1-\mu)x_2)\leq \mu f(x_1)+(1-\mu)(f(x_2)+K)
f(μx1+(1−μ)x2)≤μf(x1)+(1−μ)(f(x2)+K)
设
f
(
x
)
=
g
(
x
+
β
(
x
)
R
)
f(x)=g\big(x+\beta(x)R\big)
f(x)=g(x+β(x)R),其中
β
(
x
)
∈
[
0
,
1
]
\beta(x)\in [0,1]
β(x)∈[0,1]。由于
min
0
≤
z
≤
R
g
(
μ
x
1
+
(
1
−
μ
)
x
2
+
z
)
≤
g
(
μ
x
1
+
(
1
−
μ
)
x
2
+
μ
β
(
x
1
)
R
+
(
1
−
μ
)
β
(
x
2
)
R
)
\begin{aligned}&\min_{0\leq z\leq R}g(\mu x_1+(1-\mu)x_2+z)\\ &\leq g\big(\mu x_1+(1-\mu)x_2+\mu\beta(x_1)R+(1-\mu)\beta(x_2)R\big) \end{aligned}
0≤z≤Rming(μx1+(1−μ)x2+z)≤g(μx1+(1−μ)x2+μβ(x1)R+(1−μ)β(x2)R)
上面这一步很巧, 利用构造函数去掉了 min 对分析函数性质的影响,也最重要,下面使用时结合了 f ( x ) f(x) f(x) 的定义(第一个小于等于号,稍微有点绕)
因此
f
(
μ
x
1
+
(
1
−
μ
)
x
2
)
=
g
(
μ
x
1
+
(
1
−
μ
)
x
2
+
β
(
μ
x
1
+
(
1
−
μ
)
x
2
)
R
)
≤
g
(
μ
x
1
+
(
1
−
μ
)
x
2
+
μ
β
(
x
1
)
R
+
(
1
−
μ
)
β
(
x
2
)
R
)
=
g
(
μ
(
x
1
+
β
(
x
1
)
R
)
+
(
1
−
μ
)
(
x
2
+
β
(
x
2
)
R
)
)
≤
μ
g
(
x
1
+
β
(
x
1
)
R
)
+
(
1
−
μ
)
(
g
(
x
2
+
β
(
x
2
)
R
)
+
K
)
)
=
μ
f
(
x
1
)
+
(
1
−
μ
)
(
f
(
x
2
)
+
K
)
\begin{aligned}f(\mu x_1+(1-\mu)x_2)&=g\big(\mu x_1+(1-\mu)x_2+\beta(\mu x_1+(1-\mu)x_2)R\big)\\ &\leq g\big(\mu x_1+(1-\mu)x_2+\mu\beta(x_1)R+(1-\mu)\beta(x_2)R\big)\\ &=g\big(\mu(x_1+\beta(x_1)R)+(1-\mu)(x_2+\beta(x_2)R)\big)\\ &\leq\mu g(x_1+\beta(x_1)R)+(1-\mu)(g(x_2+\beta(x_2)R)+K))\\ &=\mu f(x_1)+(1-\mu)(f(x_2)+K) \end{aligned}
f(μx1+(1−μ)x2)=g(μx1+(1−μ)x2+β(μx1+(1−μ)x2)R)≤g(μx1+(1−μ)x2+μβ(x1)R+(1−μ)β(x2)R)=g(μ(x1+β(x1)R)+(1−μ)(x2+β(x2)R))≤μg(x1+β(x1)R)+(1−μ)(g(x2+β(x2)R)+K))=μf(x1)+(1−μ)(f(x2)+K)
得证
□
\qquad\Box
□