矩阵迹(trace)与行列式(determinate)的一些性质

1. 迹(trace)

矩阵的迹(trace)表示矩阵 A A A 主对角线所有元素的和,即
tr ( A ) = a 11 + a 22 + ⋯ + a n n \text{tr}(A)=a_{11}+a_{22}+\dots+a_{nn} tr(A)=a11+a22++ann

性质:
(1) t r ( A ) = t r ( A T ) tr(A)=tr(A^T) tr(A)=tr(AT)
(2) t r ( A B ) = t r ( B A ) tr(AB)=tr(BA) tr(AB)=tr(BA)
(3) t r ( A B C ) = t r ( B C A ) = t r ( C A B ) tr(ABC)=tr(BCA)=tr(CAB) tr(ABC)=tr(BCA)=tr(CAB) 循环性
(4) 若 A A A B B B 相似,则 t r ( A ) = t r ( B ) tr(A)=tr(B) tr(A)=tr(B),因为 t r ( A ) = t r ( P B P − ) = t r ( P P − B ) = t r ( B ) tr(A)=tr(PBP^{-})=tr(PP^-B)=tr(B) tr(A)=tr(PBP)=tr(PPB)=tr(B)
(5) t r ( A + B ) = t r ( A ) + t r ( B ) tr(A+B)=tr(A)+tr(B) tr(A+B)=tr(A)+tr(B)

2. 行列式(determinant)

矩阵 A A A 的行列式值记为 det ( A ) \text{det}(A) det(A)
它的性质:

  • d e t ( A ) = d e t ( A T ) det(A)=det(A^T) det(A)=det(AT)
  • d e t ( A ) = 1 / d e t ( A − ) det(A)=1/det(A^-) det(A)=1/det(A)
  • d e t ( A B ) = d e t ( A ) d e t ( B ) det(AB)=det(A)det(B) det(AB)=det(A)det(B)
  • A A A B B B 相似,则 d e t ( A ) = d e t ( B ) det(A)=det(B) det(A)=det(B)
  • d e t ( c A ) = c n d e t ( A ) det(cA)=c^ndet(A) det(cA)=cndet(A)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心态与习惯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值