- 博客(6)
- 收藏
- 关注
原创 解读Autoware.Universe规划模块:Behavior Path Planner
Behavior Path Planner是一个基于行为生成不同形态路径的路径规划器,负责生成基于交通状况的路径(path),车辆可以移动的可行驶区域(drivable area)(在路径消息中定义),将被发送到车辆接口的转向信号(turn signal) 命令。
2022-11-24 10:09:11 4229 1
原创 Autoware.Universe:如何在Carla 0.9.13上运行
Autoware.Universe运行于Carla Simulator 0.9.13
2022-11-22 08:55:30 3345 13
原创 解读Autoware.Universe规划模块:Mission Planner
Mission Planner 负责计算出一条从当前自车位姿(current ego pose)起沿着给定的检查点导航至目标位姿(goal pose)的路线。该路线由静态地图上的一系列车道组成。路线规划不考虑动态物体(如行人和其他车辆)和动态地图信息(如阻塞部分车道的道路施工区域)。因此,输出主题仅在给出目标位姿或检查点时才发布,并将被锁定,直到给出新的目标位姿或检查点。
2022-11-21 14:37:12 2271
原创 浅谈行为树(Behavior Trees)与机器人行为规划(Behavior Planning)
浅谈行为树(Behavior Trees)什么是行为树(Behavior Trees)?行为树是一种描述计划或任务执行的数学模型,在计算机科学、机器人学、控制科学和电子游戏中均有应用。行为树用模块化的方式描述有限的任务集合之间的转换。其优势在于可以创建由简单任务组成的复杂任务,而不需要考虑简单任务是如何执行的。行为树表现出与层级状态机(Hierarchical state machines)的许多相似性,但又有着关键的区别:行为树的主要构建模块是任务而不是状态。因为行为树更容易被理解,在设计中相对不
2022-02-07 10:15:32 8465
原创 视觉SLAM笔记第一篇:概述
目录视觉SLAM笔记第一篇:概述1. 引言2. 什么是视觉SLAM?鸣谢视觉SLAM笔记第一篇:概述1. 引言SLAM的全称是同时定位与建图(Simultaneous localization and mapping),是机器人在未知环境进行(室内或室外)定位的重要手段,也用于进行三维重建,比如稀疏-半稠密重建和稠密重建。SLAM应用的领域很多,比如手持定位设备、自动驾驶的定位和增强现实技术(Augmented Reality)。视觉SLAM是利用计算机视觉技术实现SLAM的一种应用技术。学习(视觉
2021-07-20 10:35:25 224
原创 运动规划算法之概率路线图(Probabilistic Roadmaps)
内容概率路线图(Probabilistic Roadmaps)简介改进算法参考概率路线图(Probabilistic Roadmaps)简介概率路线图(PRM)是基于可用空间和占用空间的给定地图内可能路径的网络图。概率路线图法(PRM)将规划分为两个阶段:学习阶段和查询阶段。在学习阶段,建立一个路线图QfreeQ_{free}Qfree;在查询阶段,利用搜索算法在路线图上寻找路径。一个...
2020-05-02 09:07:36 3719
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人