浅谈行为树(Behavior Trees)与机器人行为规划(Behavior Planning)

本文深入浅出地介绍了行为树(Behavior Trees)的概念及其在机器人行为规划中的应用。行为树作为任务执行的数学模型,相较于有限状态机具有更高的灵活性和可修改性,常用于游戏开发和机器人领域。文章详细解析了行为树的结构、常见术语,并通过机器人搜寻物体的案例展示了其工作原理和设计准则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

浅谈行为树(Behavior Trees)

什么是行为树(Behavior Trees)?

行为树是一种描述计划或任务执行的数学模型,在计算机科学、机器人学、控制科学和电子游戏中均有应用。行为树用模块化的方式描述有限的任务集合之间的转换。其优势在于可以创建由简单任务组成的复杂任务,而不需要考虑简单任务是如何执行的。

行为树表现出与层级状态机(Hierarchical state machines)的许多相似性,但又有着关键的区别:行为树的主要构建模块是任务而不是状态。

因为行为树更容易被理解,在设计中相对不容易出错,使得其在游戏开发领域颇为流行。

在机器人领域的应用

行为树源于在计算机游戏开发中一个非常强大的对非玩家角色(NPC)的行为建模。它被诸如Halo、Bioshock和Spore等游戏高度使用。行为树在游戏人工智能教材中已经被认为是发展成熟的,在主流的游戏开发软件Unity和Unreal Engine中也是被广泛使用。

在机器人领域,行为树最先被作为一个多任务控制框架,使用在无人机、复杂机器人、机器人操作和多机器人系统中。

行为树(Behavior Trees)还是有限状态机(Finite State Machine)

什么情形下使用行为树而不是有限状态机呢?

总的来说,行为树更适合用来设计人工智能(AI),而有限状态机更适用在可视化编程(Visual

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值