矩陣分析-線性系統-5 最小二乘問題(The Least Squares Problem)

本文探讨了一种通过绳子弹性实验确定其弹性的方法,并详细解释了如何利用最小二乘法进行数据拟合。文章还介绍了最小二乘法的基本原理,包括超定系统的解、欧氏距离的运用以及条件数的概念。通过Matlab实现最小二乘法求解,并分析了正则方程组的优缺点。
摘要由CSDN通过智能技术生成
http://www.cnblogs.com/pegasus/archive/2011/11/10/2244472.html  

1. 引文

假設我們要確定一根繩子的彈性,而它的長度與拉力間服從公式imageF為拉力,l為繩子在拉力F作用下的長度,ek為待確定的常數。為此,我們進行一批實驗采集如下數據,並繪制其散點圖

                                    image          image                             

根據此數據,構造的公式及其矩陣形式為

                                  image                               image

要解此方程需要利用最小二乘方法。

2. 最小二乘方法

對於上例所示的系統image,A為m*n且m>n的矩陣,被成為超定的(overdetermined)。一般,它沒有解。例如,當m=3,n=2時,A的兩個列向量imageimageimage空間圖形如下,我們希望能獲得此列向量的線性組合以使image。從圖中,可清楚看出這是不可能的,因為b並不在imageimage張成的空間中。

                                                   image

這時,因為無法求求解,退而求其次,我們希望解x1和x2使殘差向量(residual vector)image盡可能小。當然,這時解就依賴於如何度量殘差向量的長度。在最小二乘方法中使用歐氏距離,問題轉換為下面優化問題

                                                     image

由上面圖形可知,當線性組合使殘差變量與品面正交時,向量b到此平面的距離最小。表達為公式imageimage代入上式有,解此公式就得到最小二乘意義下的解。

                                                 image,稱為正規方程組(normal equations)

定理:若A的列向量線性獨立,則image是非奇異的,並且有唯一解。

3. 案例分析

                          image

利用matlab

>> C=A』*A % Normal equations 
C= 5 15 
15 55 
>> x=C\(A』*b) 
x = 4.2360 
3.2260

 

注意,利用正規方程組解最小二乘問題有以下缺陷:

1)構造image會導致信息丟失

2)image的條件數是A的平方

3.1 image會導致信息

對於imageimage。當image非常小時,會造成image的浮點表達image從而導致正規方程組為奇異的。因此,A中重要信息在image中丟失了

 

3.2image條件數大

     image

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值