大话目标检测经典模型:Mark R-CNN

本文详细介绍了目标检测模型的发展,重点剖析了Mask R-CNN的工作原理,包括其如何在Faster R-CNN基础上增加像素级分割任务,并通过RoIAlign解决定位精度问题,实现精准的目标检测与分割。
摘要由CSDN通过智能技术生成

在之前的文章中介绍了目标检测经典模型(R-CNN、Fast R-CNN、Faster R-CNN),目标检测一般是为了实现以下效果:
 
在R-CNN、Fast R-CNN、Faster R-CNN中,实现了对目标的识别和定位,如下图所示:
 
为了更加精确地识别目标,实现在像素级场景中识别不同目标,利用“图像分割”技术定位每个目标的精确像素,如下图所示(精确分割出人、汽车、红绿灯等):
 
Mask R-CNN便是这种“图像分割”的重要模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值