【干货整理】CNN(卷积神经网络)进化史

本文概述了CNN的发展历史,从LeNet到AlexNet、VGG、GoogLeNet、ResNet等模型的演变,探讨了网络结构加深、卷积功能增强以及从分类到检测的转变。通过一系列文章,详细介绍了每个阶段的里程碑成果,旨在帮助读者深入理解CNN的经典模型和其在图像处理中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

卷积神经网络(CNN)近年来取得了长足的发展,是深度学习中的一颗耀眼明珠。CNN不仅能用来对图像进行分类,还在图像分割(目标检测)任务中有着广泛的应用。CNN已经成为了图像分类的黄金标准,一直在不断的发展和改进。


刘昕博士总结了CNN的演化历史,如下图所示:
 
CNN的起点是神经认知机模型,此时已经出现了卷积结构,经典的LeNet诞生于1998年。然而之后CNN的锋芒开始被SVM等模型盖过。随着ReLU、dropout的提出,以及GPU和大数据带来的历史机遇,CNN在2012年迎来了历史突破:AlexNet。随后几年,CNN呈现爆发式发展,各种CNN模型涌现出来。
 
CNN的主要演进方向如下:
1、网络结构加深
2、加强卷积功能
3、从分类到检测
4、新增功能模块

下图是CNN几个经典

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值