质点系的牛顿-欧拉动力学方程

本文介绍了经典力学的基础概念,包括参考系、坐标系、力和运动学量,并深入探讨了单个质点的牛顿方程、动量守恒、功能原理以及质点系的动力学方程,特别是欧拉方程的应用。
摘要由CSDN通过智能技术生成

请大家不要编辑这个页面,unless I ask you to do so

1 经典力学(牛顿力学)的重要概念

经典力学是充分利用了欧式几何的公理化方法来构建我们的知识体系。了解什么是公理化方法。知识的公理化可以帮助我们记住和理解繁多的知识。

思考:这些概念中,哪些是最基本的,也就是不能用其他概念来定义的? 哪些又是用基本概念和法则定义出的扩展的概念?

1.1 参考系,空间,时间,欧式几何,牛顿时空观

世界参考系

虽然即使是牛顿时空观中,参考系也没有绝对的,只有惯性和非惯性的区别,但是在我们开始观察宇宙时,我们总要从某一个参考系开始的。我们一般都选择一个惯性参考系开始我们对宇宙的观察,不妨称这个参考系为“世界参考系”。世界参考系在机器人力学,游戏空间中都是常见的。

欧氏几何对经典力学的重要性:一是提供了欧式几何(平直空间几何学),二是牛顿借鉴了欧式几何的公理化思想。

1.2 坐标系:笛卡尔坐标,柱坐标系,球坐标系

1.3 位置矢量,位移矢量,速度矢量,加速度矢量

1.4 力矢量,力矩矢量,4个基本相互作用,能量

1.5 惯性系是F=ma成立的参考系

1.6 绝对和相对时间导数在这里插入图片描述

在这里插入图片描述


上面两幅图中,假设驾驶员与自己的火车/飞机相对静止,头部和眼睛完全固定,问:
测试1: 左图火车例子:A观察到的B的速度矢量 = 负的 (B观察到的A的速度矢量), 这个结论对还是错?

测试2: 右图飞机例子:A观察到的B的速度矢量 = 负的 (B观察到的A的速度矢量), 这个结论对还是错?

转动参考系,平动参考系

经典力学中,每个参考系都是固结于一个已知的刚体。定义一个参考系需要一个刚体,因为需要三维的刚体才能作为参考来定义方向,即:上下,左右,前后。一个点是不足以定义一个参考系的,“相对某个点的速度”这句话是不严谨的,下文中我们会说“相对质心的速度”,这个说法是不严谨的。那这句话到底该怎么理解?这里我们给出答案。

相对世界参考系,如果一个参考系所固结的刚体有转动,则称该参考系是转动参考系。

首先,此处,我们给世界参考系,另一个任意参考系,配上笛卡尔坐标系,参考系和笛卡尔坐标系的合体,英文就简单的称为Frame,中文就称为参考标架
{ e ⃗ i , t } , i = 1 , 2 , 3 \left\{ { { {\vec e}_i},t} \right\},i = 1,2,3 { e i,t},i=1,2,3
{ ξ ⃗ i , t ~ } , i = 1 , 2 , 3 \left\{ { { {\vec \xi }_i},\tilde t} \right\},i = 1,2,3 { ξ i,t~},i=1,2,3
记住:数值上, t = t ~ t = \tilde t t=t~,但他们在求导时代表不同的观察者或参考系。

在世界参考系中观察到的时间变化率,暂时称为绝对时间导数,记为: d d t ( p h y s i c a l − q u a n t i t y ) {d \over {dt}}\left( { {\rm{physical-quantity}}} \right) dtd(physicalquantity)

在其他参考系中观察到的时间变化率,暂时称为相对时间导数,记为: d d t ~ ( p h y s i c a l q u a n t i t y ) {d \over {d\tilde t}}\left( { {\rm{physical quantity}}} \right) dt~d(physicalquantity)

对所有的标量,我们有: d d t ( s c a l a r ) = d d t ~ ( s c a l a r ) {d \over {dt}}\left( { {\rm{scalar}}} \right) = {d \over {d\tilde t}}\left( { {\rm{scalar}}} \right) dtd(scalar)=dt~d(scalar)

讲下面的式子之前,需要一个动坐标架
对所有的矢量,我们有:
d d t ( v e c t o r ) = d d t ~ ( v e c t o r ) + ω ⃗ × ( v e c t o r ) {d \over {dt}}\left( { {\rm{vector}}} \right) = {d \over {d\tilde t}}\left( { {\rm{vector}}} \right) + \vec \omega \times \left( { {\rm{vector}}} \right) dtd(vector)=dt~d(vector)+ω ×(vector)
怎么证明?

d ξ ⃗ i d t ~ ≡ 0 ⃗ { {d{ {\vec \xi }_i}} \over {d\tilde t}} \equiv \vec 0 dt~dξ i

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值