刚体质量分布与牛顿-欧拉方程

本文深入探讨了刚体的质量分布特性,包括惯性矩、惯性积、转动惯量和惯性张量。解释了它们在不同参考系中的描述,并介绍了牛顿-欧拉方程在描述刚体平动和转动中的应用。此外,还讨论了如何在VREP和Solidworks中定义和测量物体的质量属性。
摘要由CSDN通过智能技术生成

惯性矩、惯性积、转动惯量、惯性张量

  • 惯性矩是一个几何量,通常被用作描述截面抵抗弯曲的性质。惯性矩的国际单位为(m4)。即面积二次矩,也称面积惯性矩,而这个概念与质量惯性矩(即转动惯量)是不同概念。
  面积元素dA与其至z轴或y轴距离平方的乘积y2dA或z2dA,分别称为该面积元素对于z轴或y轴的惯性矩或截面二次轴矩。惯性矩的数值恒大于零。 对Z轴的惯性矩:$I_z=\int_A y^2 dA $, 对Y轴的惯性矩:$I_y=\int_A z^2 dA $

  • 惯性积:质量惯性积是刚体动力学中一个重要的质量几何性质。刚体中的质量微元 Δmi与这微元的两个直角坐标的乘积对刚体的总和。其数值为:$$I_{xy}=\sum_{i}m_ix_iy_i \quad or \quad  I_{xy}=\int xydm$$

  对于给定的物体,惯性积的值与建立的坐标系的位置及方向有关,如果我们选择的坐标系合适,可使惯性积的值为零。当对于某一坐标轴的惯性积为零时,这种特定的坐标轴称为惯性主轴或主轴(principal axes),相应的质量惯性矩称为主惯性矩(principal moments of inertia)。显然,如果刚体本身具有某种几何对称性,那么它的主轴方向总是沿着它的对称轴的。但是即使是完全没有任何对称性的刚体也是存在惯性主轴的。

  • 转动惯量(Moment of Inertia)是刚体绕轴转动时惯性的量度。 在经典力学中,转动惯量又称质量惯性矩。对于一个质点,J = mr²,其中 m 是其质量,r 是质点和转轴的垂直距离。

  • 惯性张量(Inertia tensor)是描述刚体作定点转动时的转动惯性的一组惯性量,其表现形式为由9个分量构成的对称矩阵,刚体作定点转动的力学情况要比定轴转动复杂得多。

  惯性张量描述了物体的质量分布。以{A}为参考坐标系,刚体相对于坐标系{A}的惯性张量用3×3的矩阵表达:

 

 

 

 

 

 

 

 

 

 

 

  

 

 

  

  惯性张量矩阵的特征值是主惯性矩,其对应的特征向量是惯性主轴的方向向量The eigenvalues of an inertia tensor are the principal moments for the body. The associated eigenvectors are the principal axes.) 已知某参考坐标系下的惯性张量,要计算惯性主轴可以参考惯性主轴计算

 

同一向量在不同参考系中的描述

  考虑2个与刚体固连的坐标系$B$和$B'$,其中坐标系$B$的基向量为${\vec{b_x},\vec{b_y},\vec{b_z}}$,坐标系$B'$的基向量为${\vec{b_x'},\vec{b_y'},\vec{b_z'}}$。角动量及角速度在这两个坐标系中的描述为(The angular momentum vector and angular velocity vector of a rigid body are expressed in terms of these basis vectors, as follows ):

 

  可以看出在不同坐标系下,描述同一个矢量的坐标是不一样的(因为参考基准不一样)。注意当我们提及“速度”、“角速度”、“动量矩”等词时如果没有指定参考系,则默认这些矢量是在静止坐标系(惯性系)中测量的。物体运动的描述是需要参照物的,比如说刚体角速度为$\omega$,意味着该刚体相对于静止参考系的角速度为$\omega$。

  角动量和角速度的关系如下:$$\mathbf{L}=\mathbf{I} \mathbf{\omega} \\ \mathbf{L'}=\mathbf{I'} \mathbf{\omega'}$$

   其中$\mathbf{L}=(L_x,L_y,L_z)$,$\mathbf{L'}=(L'_x,L'_y,L'_z)$,$\mathbf{\omega}=(\omega_x,\omega_y,\omega_z)$,$\mathbf{\omega'}=(\omega'_x,\omega'_y,\omega'_z)$,$\mathbf{I}$是刚体关于坐标系$B$的惯性张量,$\mathbf{I'}$是刚体关于坐标系$B'$的惯性张量。

  考虑坐标系$B$到$B'$的转换矩阵为$R$,则有下列关系成立:$$L'=RL,\omega'=R \omega$$

  结合上面两个公式,可以得到:$$ I'=RIR^{T}$$

 

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值