引言
Pandas是一种常见且便捷的数据处理库,为便于使用和复习,个人针对一些常用操作进行了总结。目录
一、pandas是什么?
示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。
二、pandas常用操作有哪些?
【快速了解可参考目录】
1.导入、保存数据
1.1导入数据
import pandas as pd
# 1.直接导入
data = pd.read_csv("./data.csv", sep=",")
print(data)
# 2.特殊情况导入
# header=None可不导入列索引,engine="python"可以避免文件路径中有中文, encoding="utf_8_sig"可以使读取的内容中有中文
data = pd.read_csv("./data.csv", sep=",",header=None, engine="python", encoding="utf_8_sig")
print(data)
1.2保存数据
import pandas as pd
# index=False导出的文件没有行索引, header=False导出的文件没有列名
data.to_csv("./file/data_name.csv", index=False, header=False)
2.创建(DataFrame)
import pandas as pd
import numpy as np
# 创建一个numpy二维数组
df = np.arange(16).reshape((4,4))
data1 = pd.DataFrame(df, index=list("abcd"), columns=list("wxyz"))
print(data1)
data2 = pd.DataFrame(df, index=["A","B","C","D"], columns=["W","X","Y","Z"])
print(data2)
3.索引
3.1 按位置索引
# 返回坐标(1,2)的值
data.iloc[1, 2]
# 返回第一列的所有值
data.iloc[:, 0]
# 返回第二行所有的值
data.iloc[1, :]
3.2 按名称索引
# 返回上面第2小节中data2的W列数据
data2.loc[:, "W"]
# 返回上面第2小节中data2的W、Z列数据
data2.loc[:, ["W", "Z"]]
4.修改
4.1 增
import pandas as pd
import numpy as np
data = np.arange(12).reshape((3,4))
data = pd.DataFrame(data, index=["A","B","C"], columns=["One","Two","Three","Four"])
print(data)
# 增加一列
data["Five"] = [0,0,0]
# 增加一行
data.loc["D"]=[6,6,6,6]
4.2 删
import pandas as pd
import numpy as np
data = np.arange(12).reshape((3,4))
data = pd.DataFrame(data, index=["A","B","C"], columns=["One","Two","Three","Four"])
print(data)
# 删除,axis=1表示列方向, 列名:Two, inplace=True表示在原数据上修改
data.drop(['Two'], axis=1, inplace=True)
# 删除,axis=0表示列方向, 列名:C, inplace=True表示在原数据上修改
data.drop(['C'], axis=0, inplace=True)
4.3 查&改
查
: 对应第3节的索引
改
:索引目标位置后直接赋值
5.统计分析
5.1 相关性分析
import matplotlib.pyplot as plt
import seaborn as sns
print(data)
matrix = data.corr()
cmap = sns.diverging_palette(250, 15, s=75, l=40, n=9, center="light", as_cmap=True)
plt.figure(figsize=(12, 8))
sns.heatmap(matrix, center=0, annot=True, fmt='.2f', square=True, cmap=cmap)
总结
本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。后面会根据需要继续增加和完善文章内容。