二项分布累积分布函数绘制

1. 二项分布

在这里插入图片描述

2. 示例

投篮n次;投中概率0.1。


import matplotlib.pyplot as plt
import numpy as np 
from scipy.special import comb, perm
from scipy import integrate

fig, ax = plt.subplots(1, 1)
n = 500
p = 0.1
res = []
for k in range(n):
    def f(x
在R语言中,绘制累积分布函数(Cumulative Distribution Function, CDF)图可以使用多种方法。以下是几种常用的方法: ### 方法一:使用基本绘图函数 可以使用R语言的基本绘图函数来绘制CDF图。首先,需要生成一些数据,然后计算其累积分布函数。 ```R # 生成一些数据 set.seed(123) data <- rnorm(1000) # 计算数据的CDF sorted_cdf <- ecdf(data) # 绘制CDF图 plot(sorted_cdf, main="累积分布函数图", xlab="数据值", ylab="累积概率") ``` ### 方法二:使用ggplot2包 ggplot2包提供了更美观和灵活的绘图方式。首先,需要安装并加载ggplot2包。 ```R # 安装ggplot2包(如果尚未安装) install.packages("ggplot2") # 加载ggplot2包 library(ggplot2) # 生成一些数据 set.seed(123) data <- data.frame(value = rnorm(1000)) # 计算数据的CDF data <- data %>% arrange(value) %>% mutate(cumulative = cumsum(value) / sum(value)) # 绘制CDF图 ggplot(data, aes(x = value)) + stat_ecdf(geom = "step", color = "blue") + labs(title = "累积分布函数图", x = "数据值", y = "累积概率") ``` ### 方法三:使用dplyr和ggplot2包 结合使用dplyr和ggplot2包,可以更方便地处理数据并绘制CDF图。 ```R # 安装必要的包(如果尚未安装) install.packages("dplyr") install.packages("ggplot2") # 加载包 library(dplyr) library(ggplot2) # 生成一些数据 set.seed(123) data <- data.frame(value = rnorm(1000)) # 计算数据的CDF data <- data %>% arrange(value) %>% mutate(cumulative = cumsum(value) / sum(value)) # 绘制CDF图 ggplot(data, aes(x = value, y = cumulative)) + geom_line(color = "red") + labs(title = "累积分布函数图", x = "数据值", y = "累积概率") ``` 以上方法都可以用来绘制累积分布函数图,具体选择哪种方法可以根据实际需求和数据处理的需求来决定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rosefunR

你的赞赏是我创作的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值