白话TensorFlow+实战系列(一)
详解Tensor与Flow
这是本人第一次写这么正经的博客,一方面是想将自己所学的知识系统的记录下来,另一方面也算是一个记录自己学习过程吧,以后可留作一个念想。本人一直在学习深度学习的有关知识,主要研究自然语言处理方面。老实讲,这几天在用TensorFlow写BiLSTM时,发现自己代码写的太乱,之前实现简单任务时呢,由于代码量不多,所以马马虎虎能看,而一旦任务变复杂,深感自己对TensorFlow理解不够好,越写越乱,到后面自己都不知道在写什么了。所以决定从头学习TensorFlow,顺便记录下来写成一个系列,方便自己日后查看。之前学习TensorFlow都是看官方文档、极客学院的翻译文档,以及各个博客上的一些总结。自己感觉学习的太碎片化,无法成为一个系统。这个系列我尽量用自己理解的方式记录,如果小博文有幸被你看见,希望能对你有所帮助。当然本人水平也有限,如有不对的地方,欢迎各位指正。
正题:
TensorFlow作为目前最欢迎的深度学习框架(是的,GitHub上已超越Caffe),是由Google开源的一个计算框架,该框架已经很好的集成了深度学习的各种算法,所以说是非常方便,并且与Keras也兼容,再加上Google强大的资源,可以说选TensorFlow进行深度学习是非常明智的。TensorFlow这个名字是由Tensor(张量)与Flow(流)两部分组成,一看就知道这两部分格外重要,不然Google也不会随便拿来命名。所以接下来就挨个详细解剖这俩部分。
<