车辆方向盘转角传动比标定方法

本文介绍了一种针对车辆方向盘转角传动比的标定方法,包括类正三角形标定法与半圆标定法。这两种方法通过精确测量不同方向盘角度下的车辆转弯半径来确定传动比,对于自动泊车系统的开发至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

车辆方向盘转角传动比标定方法

​ 在自动泊车开发及测试过程中,必须要使用车辆方向盘转角传动比参数。方向盘转角传动比对应着不同方向盘转角与车辆转弯半径的关系。在实际应用中一般整车厂会给出出厂计算的传动比对照表,但实际车辆行驶过程中传动比受地面摩擦力,平整度等影响。一般使用过程中需要在平整路面上重新进行标定。

​ 标定方向盘和轮胎传动比理论需要测量方向盘所有角度对应的车辆半径。但由于测量条件及场地限制所以采用从-520~520度,每隔30度取一个测量点的方式进行标定。且需要对车辆前进和后退均进行标定。具体标定方法有如下两种:

一.类正三角形标定法

开始标定前先寻找开阔平整路面,保证车子有足够面积行驶。车子开始行驶跑圈前对车辆进圆心方向后轮外侧位置进行起点标记。

如下图:
在这里插入图片描述

1、将方向盘打到相应角度可采取EPS控制车辆方向盘至指定角度(如:510°),在靠近圆心的后轮外侧地上,做好后轮位置标记,一般为后轮中心位置(如上示意图)。
2、车辆行驶在低速情况下(5Km/h),车辆大约转过120°时,同第一个点做法一致,记下第二个后轮位置。
3、车辆继续行驶,依次记录下剩下的点,并保证车辆行驶回到起点,记下车辆转过一圈后,回到起始点位置,比较终点和起点偏差,如果轮胎位置偏差超过10cm,则此次测量误差较大,数据无效,重新测量。
4、测量三个点之间的距离,并记录到表格中以计算其他数据。

在这里插入图片描述

根据海伦公式即可求出不同方向盘角度下的车辆转弯半径

设p=(a+b+c)/2,根据海伦公式:面积S=√p(p-a)(p-b)(p-c)
外接圆半径:R=abc/(4S).

二.半圆标定法

1、将测试车辆停在标有直线的测试场地,后轴中心与直线重合(便于标记和测试轨迹直径)。将方向盘打到相应角度(如:520°),在靠近圆心的后轮外侧地上,做好后轮位置标记。
2、车辆行驶在低速情况下(5Km/h),车辆大约转过180°时,车子后轴与直线再次重合(用于标定车辆转过半圈),记下后轮位置,即为终点。
3、沿测试场地上直线,测量起点与终点之间的距离,即为转弯内轮轨迹直径。记录到表格中以计算其他数据。
在这里插入图片描述

半圆标定法标定过程中直接测量转弯直径,取r = d/2 即可

备注:标注过程中保持标定场地平整开阔,车速保持在5km/h 以下车速平稳
数据记录表

### 驾驶员模型中的方向盘转角控制 在构建驾驶员模型时,方向盘转角作为关键输入之一,在模拟真实驾驶行为方面起着至关重要的作用。为了提高路径跟随精度并确保稳定性和响应性,通常会采用预瞄点搜索算法来决定所需的方向盘角度调整[^1]。 对于具体实现而言,当车辆沿预定轨迹行驶时,系统持续监测当前坐标与期望路线之间的偏差,并据此动态调节转向指令。这种策略不仅适用于直线段也适合处理弯道情况。特别是在涉及复杂路况条件下,通过实时评估前方一定距离处的目标位置(即所谓的“预瞄点”),可以更精准地预测必要的转弯动作,从而优化整体操控表现。 此外,在某些高级应用场合下还会结合四轮转向技术进一步增强灵活性和安全性。此时除了常规的前轴调控外,也会对后桥施加适当的角度变化以辅助完成更加精细的姿态修正任务。例如,文献提到使用滑模控制器来进行此类多轴协同作业的设计方案[^2]。 至于底层物理机制,则往往依赖于简化版的动力学框架——比如二自由度模型——它能有效捕捉到核心要素如车身重心位移以及轮胎侧倾效应的影响,同时保持相对较低的计算成本以便快速迭代求解过程。此方法假设忽略悬挂系统的贡献并将整个装置抽象成一对理想化车轮单元;另外还假定胎面摩擦力呈线性关系且不考虑任何纵向加速因素干扰,使得最终得到的状态方程组易于解析表达和数值仿真验证[^3]。 ```matlab % MATLAB/Simulink 中用于计算目标方向盘转角的基础伪代码片段 function delta = calculateSteeringAngle(currentPose, lookaheadPoint, vehicleParams) % currentPose: 当前车辆姿态 (x,y,theta),lookaheadPoint: 预瞄点坐标 (x',y'), % vehicleParams: 包含诸如轮距、轴距等几何属性的对象 % 计算当前位置至预瞄点连线相对于前进方向的角度差值 deltaX = lookaheadPoint(1) - currentPose(1); deltaY = lookaheadPoint(2) - currentPose(2); alpha = atan2(deltaY,deltaX); % 连接两点形成的矢量方位角 beta = mod(alpha-currentPose(end), pi*2)-pi; % 对齐误差 L = sqrt(sum((currentPose([1 2])-lookaheadPoint).^2)); % 到达预瞄点的距离 k = vehicleParams.wheelbase / L; delta = arctan(k * sin(beta)); end ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值