如何制作一个侦探 AI 模型? 🕵️♂️
目标:打造一个侦探 AI,能够分析线索、推理案件、识别嫌疑人、提供推理建议,类似于夏洛克·福尔摩斯的思维方式。
1. 侦探 AI 的核心功能
侦探 AI 需要具备以下能力:
- 信息收集:整合案情线索(文本、图片、视频、语音等)。
- 模式识别:分析犯罪模式、时间线、犯罪动机等。
- 推理与逻辑分析:使用贝叶斯推理、图数据库(知识图谱)建立案件关系网。
- 自然语言处理(NLP):理解案件描述,分析证词矛盾点。
- 证据验证:基于历史数据和物证交叉对比,筛选可能的犯罪嫌疑人。
- 模拟推理:生成可能的犯罪场景,并预测下一步行动。
2. 数据获取与预处理
(1)案件数据集
首先,我们需要收集大量真实或虚构的案件数据,如:
- 真实犯罪案例(警方公开数据)
- 侦探小说数据(如阿加莎·克里斯蒂、福尔摩斯)
- 电影、游戏(如《逆转裁判》《L.A. Noire》)
(2)数据预处理
- 文本清理(去除无关字符、标准化案件描述)
- 实体识别(NER)(提取嫌疑人、受害者、作案工具等)
- 关系提取(建立“谁做了什么”关系)
- 时间线构建(还原案发过程)
示例:使用 spaCy
进行案件实体提取:
import spacy
nlp = spacy.load("en_core_web_sm")
text = "Detective Holmes found a knife near the victim, and suspect John had no alibi."
doc = nlp(text)
for ent in doc.ents:
print(ent.text, ent.label_) # 识别犯罪相关实体(刀、受害者、嫌疑人)
3. 侦探 AI 的推理模型
(1)基于贝叶斯推理的犯罪概率计算
我们可以使用 贝叶斯公式 计算某个嫌疑人作案的概率:
P(嫌疑人作案∣证据)=P(证据∣嫌疑人作案)P(嫌疑人作案)P(证据)P(\text{嫌疑人作案} | \text{证据}) = \frac{P(\text{证据} | \text{嫌疑人作案}) P(\text{嫌疑人作案})}{P(\text{证据})}
示例:如果一个嫌疑人没有不在场证明,并且犯罪现场有他的指纹,我们可以计算他的犯罪概率:
from scipy.stats import norm
def bayesian_probability(prior, evidence_given_guilt, evidence_given_innocence):
return (evidence_given_guilt * prior) / (evidence_given_guilt * prior + evidence_given_innocence * (1 - prior))
# 假设嫌疑人作案的先验概率
prior_suspect = 0.1 # 10% 可能性
evidence_fingerprint_given_guilt = 0.9 # 90% 罪犯留下指纹
evidence_fingerprint_given_innocence = 0.1 # 10% 无辜者留下指纹
posterior = bayesian_probability(prior_suspect, evidence_fingerprint_given_guilt, evidence_fingerprint_given_innocence)
print(f"犯罪概率: {posterior:.2f}")
(2)知识图谱构建
使用 Neo4j 或 NetworkX 构建案件关系网。
import networkx as nx
import matplotlib.pyplot as plt
# 创建一个图
G = nx.Graph()
# 添加节点(嫌疑人、受害者、证据)
G.add_nodes_from(["John", "Knife", "Victim", "Alibi"])
# 添加边(关系)
G.add_edges_from([("John", "Knife"), ("Knife", "Victim"), ("John", "Alibi")])
# 画出案件关系图
nx.draw(G, with_labels=True, node_color='lightblue', edge_color='gray', node_size=2000, font_size=10)
plt.show()
4. 侦探 AI 交互系统
可以用 GPT-4 + 规则推理 进行交互式侦探对话。
示例:FastAPI 构建侦探 AI
from fastapi import FastAPI
app = FastAPI()
@app.get("/investigate")
def investigate_case(clue: str):
if "fingerprint" in clue.lower():
return {"result": "This fingerprint matches the suspect!"}
else:
return {"result": "No strong evidence found yet."}
启动:
uvicorn main:app --reload
访问 http://127.0.0.1:8000/investigate?clue=fingerprint
来获取推理结果。
真实犯罪分析 AI:警方办案智能工具 🕵️♂️🔍
这个 AI 目标 是协助警方:
- 分析案件线索
- 推理犯罪嫌疑人
- 整合多种证据
- 预测犯罪模式
- 提高破案效率
1. 核心技术架构
- 数据收集:案件记录、证词、物证、视频、音频
- 自然语言处理(NLP):分析警方报告、嫌疑人口供
- 知识图谱(Graph Database):构建案件、人物、证据之间的关系
- 机器学习/深度学习:用于模式识别、嫌疑人分析
- 计算机视觉(CV):监控视频分析、指纹识别
- 语音分析:测谎、声音识别
2. 数据收集与预处理
需要采集多种数据类型:
- 文本:警方案件报告、审讯记录、新闻
- 视频:监控录像、行车记录仪、社交媒体
- 音频:审讯录音、报警电话、对讲记录
- 图像:指纹、车牌、人脸识别
示例:解析警方报告
import spacy
nlp = spacy.load("en_core_web_sm")
report = "On Feb 10, suspect John Doe was seen near the crime scene at 10:45 PM."
doc = nlp(report)
for ent in doc.ents:
print(ent.text, ent.label_) # 识别嫌疑人、时间、地点等
3. 知识图谱:建立案件关系网
使用 Neo4j 或 NetworkX 构建犯罪网络,帮助分析嫌疑人与案件的关联。
import networkx as nx
import matplotlib.pyplot as plt
G = nx.Graph()
# 添加节点(人物、证据、地点)
G.add_nodes_from(["John Doe", "Knife", "Crime Scene", "Victim"])
# 添加关系(嫌疑人、作案工具、案发地点)
G.add_edges_from([
("John Doe", "Knife"),
("Knife", "Crime Scene"),
("Crime Scene", "Victim")
])
nx.draw(G, with_labels=True, node_color='lightblue', edge_color='gray', node_size=2000, font_size=10)
plt.show()
📌 作用:快速发现犯罪嫌疑人和关键证据之间的关系。
4. 计算机视觉:监控视频分析
- 目标检测(YOLO)识别嫌疑人、车辆、物品
- 人脸识别(FaceNet、DeepFace)比对嫌疑人身份
- 车牌识别(OCR)查找犯罪车辆
示例:人脸识别
from deepface import DeepFace
result = DeepFace.verify("suspect.jpg", "database/suspect_123.jpg")
print(result["verified"]) # True 表示匹配成功
📌 作用:对比监控画面与犯罪嫌疑人数据库,锁定身份。
5. 语音分析:测谎 & 识别声纹
- 测谎 AI:分析语气、音调、停顿模式,检测是否撒谎
- 声纹识别:确认说话人身份
示例:使用 librosa
处理审讯录音
import librosa
audio_file = "interrogation.wav"
y, sr = librosa.load(audio_file, sr=16000)
# 提取特征(MFCC 语音特征)
mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
print(mfcc.shape)
📌 作用:识别撒谎者,或者比对录音中的声音与犯罪数据库。
6. AI 预测犯罪模式
基于历史犯罪数据,使用 机器学习 预测下一步可能的犯罪行为。
示例:XGBoost 预测犯罪
import xgboost as xgb
from sklearn.model_selection import train_test_split
# 数据集(犯罪时间、地点、嫌疑人特征)
X = crime_data[["time", "location", "suspect_age", "crime_type"]]
y = crime_data["repeat_offender"] # 预测是否为惯犯
# 训练模型
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = xgb.XGBClassifier(n_estimators=100, max_depth=5, learning_rate=0.1)
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
📌 作用:帮助警方提前预防高危犯罪分子。
7. 部署 AI 系统
可以将 AI 集成到警方系统,提供智能查询和实时分析:
- FastAPI 部署 AI 推理系统
- 与警方数据库对接
- 提供 Web 界面或移动端应用
示例:FastAPI 侦探 AI
from fastapi import FastAPI
app = FastAPI()
@app.get("/analyze")
def analyze_case(suspect: str):
# 简单返回嫌疑人信息(实际应调用数据库和 AI 推理模型)
return {"suspect": suspect, "status": "under investigation"}
# 运行 API
uvicorn.run(app, host="0.0.0.0", port=8000)
📌 作用:让警方随时随地使用 AI 办案。
AI 预测犯罪:智能分析高危犯罪模式 🚔🔍
AI 预测犯罪的核心目标是:
- 识别高危犯罪分子(惯犯、潜在犯罪嫌疑人)
- 预测犯罪热点区域(高发地区、时间段)
- 分析犯罪模式(不同类型犯罪的特征)
- 优化警力部署(提前预防可能的案件)
1. 预测犯罪的核心数据
预测犯罪需要整合多个数据源:
- 历史犯罪记录(时间、地点、作案手法、嫌疑人特征)
- 人口统计数据(年龄、职业、犯罪背景)
- 环境因素(经济状况、治安情况)
- 社交网络(嫌疑人关系、黑市交易)
- 实时数据(社交媒体、报警电话、监控视频)
2. 数据预处理
(1)数据清洗
- 处理缺失值、去除重复数据
- 统一时间格式(案件发生时间)
- 标准化地理信息(经纬度、地址)
(2)特征工程
- 时间特征:犯罪发生的时间段(白天/夜晚、节假日/工作日)
- 地点特征:高危犯罪区域(城市中心、贫民区)
- 个人特征:年龄、性别、犯罪记录
- 社交特征:嫌疑人是否与已知犯罪团伙有关
import pandas as pd
# 读取犯罪数据
crime_data = pd.read_csv("crime_records.csv")
# 处理时间数据
crime_data["datetime"] = pd.to_datetime(crime_data["datetime"])
crime_data["hour"] = crime_data["datetime"].dt.hour
crime_data["day_of_week"] = crime_data["datetime"].dt.dayofweek
crime_data["month"] = crime_data["datetime"].dt.month
# 处理地理信息
crime_data["latitude"] = crime_data["latitude"].fillna(crime_data["latitude"].median())
crime_data["longitude"] = crime_data["longitude"].fillna(crime_data["longitude"].median())
print(crime_data.head())
3. 机器学习模型
(1)XGBoost 预测犯罪嫌疑人
XGBoost 是一种强大的决策树模型,适用于犯罪预测。
import xgboost as xgb
from sklearn.model_selection import train_test_split
# 选择特征
X = crime_data[["hour", "day_of_week", "month", "latitude", "longitude", "crime_type"]]
y = crime_data["repeat_offender"] # 目标变量:是否为惯犯
# 数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 训练 XGBoost 模型
model = xgb.XGBClassifier(n_estimators=100, max_depth=5, learning_rate=0.1)
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
📌 作用:根据犯罪记录预测某人是否会再次犯罪。
(2)深度学习 LSTM 预测犯罪趋势
LSTM(长短时记忆网络)适合处理时间序列数据,可以用来预测某地未来的犯罪发生率。
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
# 假设我们有过去 30 天的犯罪数据
time_steps = 30
X_train = np.random.rand(1000, time_steps, 1) # 1000 个样本,每个样本包含 30 天的数据
y_train = np.random.rand(1000, 1) # 预测未来一天的犯罪率
# 构建 LSTM 模型
model = Sequential([
LSTM(50, return_sequences=True, input_shape=(time_steps, 1)),
LSTM(50),
Dense(1, activation="linear")
])
model.compile(optimizer="adam", loss="mse")
model.fit(X_train, y_train, epochs=10, batch_size=32)
📌 作用:基于过去犯罪数据预测未来犯罪趋势。
4. 预测高危犯罪区域
使用 热力图 可视化犯罪高发地,帮助警方优化巡逻路线。
import folium
from folium.plugins import HeatMap
# 读取数据
crime_map = folium.Map(location=[37.77, -122.42], zoom_start=12) # 以旧金山为例
heat_data = [[row["latitude"], row["longitude"]] for _, row in crime_data.iterrows()]
# 生成热力图
HeatMap(heat_data).add_to(crime_map)
crime_map.save("crime_heatmap.html") # 保存 HTML
📌 作用:帮助警方合理部署警力,减少犯罪发生。
5. 预测未来犯罪 & 预警
(1)基于社交网络分析犯罪团伙
使用 图数据库(Neo4j)分析嫌疑人社交网络,发现潜在犯罪组织。
from py2neo import Graph
# 连接 Neo4j 数据库
graph = Graph("bolt://localhost:7687", auth=("neo4j", "password"))
# 查找某个嫌疑人的关系网络
query = """
MATCH (p:Person)-[:ASSOCIATED_WITH]-(c:Crime)
WHERE p.name = 'John Doe'
RETURN c
"""
result = graph.run(query)
print(result.data())
📌 作用:发现隐藏的犯罪网络,提前预警可能的犯罪活动。
(2)AI 自动报警系统
如果某地区犯罪概率过高,AI 自动触发预警:
threshold = 0.8 # 设定犯罪概率警戒线
predicted_crime_rate = model.predict([[22, 4, 2, 37.77, -122.42, "robbery"]])[0]
if predicted_crime_rate > threshold:
print("⚠️ 该地区未来 24 小时内可能发生犯罪,请加强巡逻!")
📌 作用:AI 预测高风险地区,提醒警方加强安保。
精准嫌疑人识别 AI 🕵️♂️🔍
AI 可以帮助警方精准识别犯罪嫌疑人,核心技术包括:
- 历史数据分析:识别惯犯、高危人群
- 行为模式分析:监控异常活动、反常行为
- 社交网络分析:追踪犯罪团伙、同伙关系
- 生物识别技术:人脸识别、指纹识别、语音分析
- 大数据关联分析:整合交易记录、监控视频、通讯数据
1. 历史数据分析:锁定惯犯
通过分析犯罪记录数据库,AI 可以计算某人的犯罪概率。
import xgboost as xgb
from sklearn.model_selection import train_test_split
# 训练数据
X = crime_data[["age", "prior_arrests", "crime_type", "location_risk"]]
y = crime_data["is_suspect"] # 目标变量:是否为嫌疑人
# 训练 XGBoost 模型
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = xgb.XGBClassifier(n_estimators=100, max_depth=5, learning_rate=0.1)
model.fit(X_train, y_train)
# 预测某人是否可能犯罪
person = [[32, 5, "burglary", "high"]]
risk_score = model.predict_proba(person)[0][1] # 计算犯罪概率
print(f"犯罪风险评分: {risk_score:.2f}")
📌 作用:快速评估某人的犯罪风险。
2. 行为模式分析:检测异常行为
- 银行交易异常:大额现金流动、频繁取款
- 地理位置异常:高危区域反复出入
- 社交媒体活动:极端言论、威胁信息
示例:分析 GPS 轨迹发现异常行为
import pandas as pd
from geopy.distance import geodesic
# GPS 记录(嫌疑人位置数据)
gps_data = pd.read_csv("gps_tracking.csv")
# 计算行程距离
gps_data["prev_lat"] = gps_data["latitude"].shift(1)
gps_data["prev_lon"] = gps_data["longitude"].shift(1)
gps_data["distance"] = gps_data.apply(
lambda row: geodesic((row["prev_lat"], row["prev_lon"]), (row["latitude"], row["longitude"])).km
if pd.notnull(row["prev_lat"]) else 0, axis=1
)
# 发现异常活动(短时间内大幅度移动)
suspicious_movements = gps_data[gps_data["distance"] > 50]
print(suspicious_movements)
📌 作用:发现潜在逃犯或非法活动者。
3. 社交网络分析:锁定犯罪团伙
利用 图数据库(Neo4j) 分析嫌疑人与已知犯罪团伙的关系。
from py2neo import Graph
# 连接 Neo4j
graph = Graph("bolt://localhost:7687", auth=("neo4j", "password"))
# 查询某人的犯罪网络
query = """
MATCH (p:Person)-[:ASSOCIATED_WITH]-(c:Crime)
WHERE p.name = 'John Doe'
RETURN c
"""
result = graph.run(query)
print(result.data())
📌 作用:发现嫌疑人是否与犯罪集团有联系。
4. 生物识别:人脸、指纹、语音识别
(1)人脸识别
使用 FaceNet 或 DeepFace 识别犯罪嫌疑人。
from deepface import DeepFace
result = DeepFace.verify("suspect.jpg", "database/suspect_123.jpg")
print(result["verified"]) # True 表示匹配成功
📌 作用:对比监控画面与嫌疑人数据库。
(2)指纹识别
import cv2
# 读取指纹图像
fingerprint = cv2.imread("fingerprint.jpg", 0)
# 进行边缘检测
edges = cv2.Canny(fingerprint, 50, 200)
# 显示结果
cv2.imshow("Fingerprint Edges", edges)
cv2.waitKey(0)
📌 作用:确认嫌疑人是否触碰过犯罪现场物品。
(3)语音识别
import librosa
audio_file = "suspect_voice.wav"
y, sr = librosa.load(audio_file, sr=16000)
# 提取特征(MFCC 语音特征)
mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
print(mfcc.shape)
📌 作用:比对审讯录音,识别嫌疑人。
5. 大数据分析:整合多种数据源
- 信用卡交易(异常购物行为)
- 社交媒体(极端言论、威胁信息)
- 公共交通记录(逃亡路线)
- 智能监控(人脸识别、车辆识别)
# 结合不同数据源,分析嫌疑人行为
suspect_profile = {
"name": "John Doe",
"age": 32,
"crime_history": True,
"financial_risk": "high",
"social_connections": ["known_criminal_1", "known_criminal_2"],
}
# 计算综合犯罪风险评分
risk_score = sum([
0.4 if suspect_profile["crime_history"] else 0,
0.3 if suspect_profile["financial_risk"] == "high" else 0,
0.3 if len(suspect_profile["social_connections"]) > 1 else 0,
])
print(f"综合犯罪风险评分: {risk_score:.2f}")
📌 作用:融合多种数据,提高识别精准度。
犯罪模式 AI 分析系统 🕵️♂️📊
AI 可以帮助警方深入分析犯罪模式,发现规律、预测趋势、优化侦查方向,主要技术包括:
- 历史数据挖掘:发现犯罪高发时段、地点、作案方式
- 行为模式分析:分析嫌疑人行踪、异常行为、逃跑路线
- 社交网络分析:挖掘犯罪团伙关系,找到幕后主使
- 犯罪趋势预测:利用机器学习预测下一次犯罪可能发生的时间和地点
1. 历史数据挖掘:发现犯罪规律
(1)统计犯罪高发时间
分析不同时间段的犯罪率,找到高危时段。
import pandas as pd
import matplotlib.pyplot as plt
# 读取犯罪数据
crime_data = pd.read_csv("crime_records.csv")
crime_data["datetime"] = pd.to_datetime(crime_data["datetime"])
crime_data["hour"] = crime_data["datetime"].dt.hour
# 统计每小时的犯罪数量
crime_by_hour = crime_data["hour"].value_counts().sort_index()
# 绘制犯罪时间分布图
plt.figure(figsize=(10, 5))
plt.plot(crime_by_hour.index, crime_by_hour.values, marker='o', linestyle='-')
plt.xlabel("小时")
plt.ylabel("犯罪数量")
plt.title("不同时间段的犯罪发生率")
plt.grid()
plt.show()
📌 作用:找出夜间、高峰期的犯罪趋势,提前部署警力。
(2)犯罪地点热力图
绘制犯罪高发区域,帮助警方精准部署资源。
import folium
from folium.plugins import HeatMap
# 生成地图
crime_map = folium.Map(location=[37.77, -122.42], zoom_start=12) # 以旧金山为例
heat_data = [[row["latitude"], row["longitude"]] for _, row in crime_data.iterrows()]
# 添加热力图
HeatMap(heat_data).add_to(crime_map)
# 保存 HTML 文件
crime_map.save("crime_heatmap.html")
📌 作用:找到犯罪多发地点,提高巡逻效率。
2. 行为模式分析:检测嫌疑人异常行为
(1)GPS 轨迹分析:识别可疑移动
- 短时间内大幅度移动(可能是逃亡)
- 频繁往返特定地点(可能是犯罪据点)
from geopy.distance import geodesic
# 计算行程距离
crime_data["prev_lat"] = crime_data["latitude"].shift(1)
crime_data["prev_lon"] = crime_data["longitude"].shift(1)
crime_data["distance"] = crime_data.apply(
lambda row: geodesic((row["prev_lat"], row["prev_lon"]), (row["latitude"], row["longitude"])).km
if pd.notnull(row["prev_lat"]) else 0, axis=1
)
# 筛选异常行为(单次移动超过 50 公里)
suspicious_movements = crime_data[crime_data["distance"] > 50]
print(suspicious_movements)
📌 作用:发现潜在逃犯或走私路线。
(2)交易记录分析:检测可疑资金流动
AI 可以分析银行交易、加密货币支付、黑市交易,发现洗钱、毒品交易等犯罪行为。
import numpy as np
# 生成模拟交易数据
transactions = pd.DataFrame({
"user_id": np.random.randint(1, 1000, 500),
"amount": np.random.uniform(10, 5000, 500),
"is_suspicious": np.random.choice([0, 1], size=500, p=[0.95, 0.05])
})
# 统计高风险交易
suspicious_transactions = transactions[transactions["amount"] > 3000]
print(suspicious_transactions)
📌 作用:检测大额、频繁的可疑交易。
3. 社交网络分析:发现犯罪团伙
AI 可以分析嫌疑人的社交关系,找出犯罪网络核心人物。
from py2neo import Graph
# 连接 Neo4j
graph = Graph("bolt://localhost:7687", auth=("neo4j", "password"))
# 查询某嫌疑人的犯罪网络
query = """
MATCH (p:Person)-[:ASSOCIATED_WITH]-(c:Crime)
WHERE p.name = 'John Doe'
RETURN c
"""
result = graph.run(query)
print(result.data())
📌 作用:找出幕后黑手,打击犯罪组织。
4. 犯罪趋势预测
(1)LSTM 预测未来犯罪趋势
LSTM(长短时记忆网络)适用于时间序列数据,可以预测未来犯罪率。
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
# 模拟过去 30 天的犯罪数据
time_steps = 30
X_train = np.random.rand(1000, time_steps, 1)
y_train = np.random.rand(1000, 1)
# 构建 LSTM 模型
model = Sequential([
LSTM(50, return_sequences=True, input_shape=(time_steps, 1)),
LSTM(50),
Dense(1, activation="linear")
])
model.compile(optimizer="adam", loss="mse")
model.fit(X_train, y_train, epochs=10, batch_size=32)
📌 作用:预测未来犯罪高发期。
识别犯罪团伙核心人物 AI 🕵️♂️🔗
要精准识别犯罪团伙的核心人物,AI 需要分析社交网络、通讯记录、大数据关系,找出幕后黑手。
1. 社交网络分析(SNA):找出核心犯罪分子
AI 通过构建犯罪团伙的社交网络图,利用 PageRank 算法识别关键人物。
(1)构建犯罪网络
假设有通话记录、资金交易、社交平台互动数据,我们可以用图数据库(Neo4j)构建关系网。
from py2neo import Graph
# 连接 Neo4j
graph = Graph("bolt://localhost:7687", auth=("neo4j", "password"))
# 查询某犯罪团伙的社交网络
query = """
MATCH (p1:Person)-[:COMMUNICATES_WITH|TRANSACTS_WITH]-(p2:Person)
RETURN p1.name, p2.name
"""
result = graph.run(query)
print(result.data())
📌 作用:分析团伙成员之间的通话、交易、社交关系。
(2)计算 PageRank 找出核心人物
PageRank 算法可以找出影响力最大的嫌疑人(可能是幕后主使)。
query = """
CALL gds.pageRank.stream('crime_network')
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY score DESC
LIMIT 5
"""
result = graph.run(query)
print(result.data())
📌 作用:评分越高,说明此人可能是犯罪团伙的核心领导者。
2. 通讯记录分析:发现幕后指挥者
犯罪团伙的核心人物通常是通讯频率高、信息流动中心的人。
(1)分析电话通话频率
import pandas as pd
# 读取通话记录
calls = pd.read_csv("call_records.csv")
# 统计每个人的通话次数
call_counts = calls["caller_id"].value_counts()
print(call_counts.head(10))
📌 作用:找出通话最多的人,可能是犯罪头目。
(2)分析异常通讯行为
- 频繁更换号码:规避追踪
- 深夜联系:隐藏交流
- 单向通讯:只下达命令,不接收反馈
# 找出单向通讯的用户(他们只打电话,不接电话)
one_way_calls = calls.groupby("caller_id").filter(lambda x: x["receiver_id"].nunique() == 1)
print(one_way_calls)
📌 作用:可能是幕后指挥者,他们通常只下达命令,而不会回复信息。
3. 资金交易分析:找出洗钱网络
幕后主使往往负责资金流动,可以通过交易记录找出谁在分发赃款。
(1)分析资金流向
# 读取交易数据
transactions = pd.read_csv("transactions.csv")
# 找出资金流向最多的人
top_senders = transactions["sender_id"].value_counts().head(10)
top_receivers = transactions["receiver_id"].value_counts().head(10)
print("资金流出最多的人:\n", top_senders)
print("资金流入最多的人:\n", top_receivers)
📌 作用:资金流出最多的人可能是黑帮财务官,资金流入最多的人可能是洗钱账户。
(2)检测可疑交易
# 找出交易金额异常高的记录
suspicious_transactions = transactions[transactions["amount"] > 10000]
print(suspicious_transactions)
📌 作用:锁定可疑的大额转账,排查幕后资金来源。
4. 结合 AI 进行高危人物预测
结合 社交网络分析(SNA)+ 资金流动 + 通讯模式,用机器学习训练一个模型预测高危嫌疑人。
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
# 特征数据
X = crime_data[["call_count", "money_transferred", "social_network_score"]]
y = crime_data["is_core_member"] # 是否为核心犯罪分子
# 训练模型
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
# 预测某人是否为核心成员
person = [[50, 100000, 0.9]] # 50 次通话,大额资金交易,社交影响力高
prediction = model.predict(person)
print(f"该嫌疑人是否是核心人物:{prediction[0]}")
📌 作用:AI 计算犯罪嫌疑人的核心程度,锁定幕后黑手。