制作一个侦探AI模型

如何制作一个侦探 AI 模型? 🕵️‍♂️

目标:打造一个侦探 AI,能够分析线索、推理案件、识别嫌疑人、提供推理建议,类似于夏洛克·福尔摩斯的思维方式。


1. 侦探 AI 的核心功能

侦探 AI 需要具备以下能力:

  1. 信息收集:整合案情线索(文本、图片、视频、语音等)。
  2. 模式识别:分析犯罪模式、时间线、犯罪动机等。
  3. 推理与逻辑分析:使用贝叶斯推理、图数据库(知识图谱)建立案件关系网。
  4. 自然语言处理(NLP):理解案件描述,分析证词矛盾点。
  5. 证据验证:基于历史数据和物证交叉对比,筛选可能的犯罪嫌疑人。
  6. 模拟推理:生成可能的犯罪场景,并预测下一步行动。

2. 数据获取与预处理

(1)案件数据集

首先,我们需要收集大量真实或虚构的案件数据,如:

  • 真实犯罪案例(警方公开数据)
  • 侦探小说数据(如阿加莎·克里斯蒂、福尔摩斯)
  • 电影、游戏(如《逆转裁判》《L.A. Noire》)

(2)数据预处理

  1. 文本清理(去除无关字符、标准化案件描述)
  2. 实体识别(NER)(提取嫌疑人、受害者、作案工具等)
  3. 关系提取(建立“谁做了什么”关系)
  4. 时间线构建(还原案发过程)

示例:使用 spaCy 进行案件实体提取:

import spacy

nlp = spacy.load("en_core_web_sm")
text = "Detective Holmes found a knife near the victim, and suspect John had no alibi."
doc = nlp(text)

for ent in doc.ents:
    print(ent.text, ent.label_)  # 识别犯罪相关实体(刀、受害者、嫌疑人)

3. 侦探 AI 的推理模型

(1)基于贝叶斯推理的犯罪概率计算

我们可以使用 贝叶斯公式 计算某个嫌疑人作案的概率:

P(嫌疑人作案∣证据)=P(证据∣嫌疑人作案)P(嫌疑人作案)P(证据)P(\text{嫌疑人作案} | \text{证据}) = \frac{P(\text{证据} | \text{嫌疑人作案}) P(\text{嫌疑人作案})}{P(\text{证据})}

示例:如果一个嫌疑人没有不在场证明,并且犯罪现场有他的指纹,我们可以计算他的犯罪概率:

from scipy.stats import norm

def bayesian_probability(prior, evidence_given_guilt, evidence_given_innocence):
    return (evidence_given_guilt * prior) / (evidence_given_guilt * prior + evidence_given_innocence * (1 - prior))

# 假设嫌疑人作案的先验概率
prior_suspect = 0.1  # 10% 可能性
evidence_fingerprint_given_guilt = 0.9  # 90% 罪犯留下指纹
evidence_fingerprint_given_innocence = 0.1  # 10% 无辜者留下指纹

posterior = bayesian_probability(prior_suspect, evidence_fingerprint_given_guilt, evidence_fingerprint_given_innocence)
print(f"犯罪概率: {posterior:.2f}")

(2)知识图谱构建

使用 Neo4jNetworkX 构建案件关系网。

import networkx as nx
import matplotlib.pyplot as plt

# 创建一个图
G = nx.Graph()

# 添加节点(嫌疑人、受害者、证据)
G.add_nodes_from(["John", "Knife", "Victim", "Alibi"])

# 添加边(关系)
G.add_edges_from([("John", "Knife"), ("Knife", "Victim"), ("John", "Alibi")])

# 画出案件关系图
nx.draw(G, with_labels=True, node_color='lightblue', edge_color='gray', node_size=2000, font_size=10)
plt.show()

4. 侦探 AI 交互系统

可以用 GPT-4 + 规则推理 进行交互式侦探对话。

示例:FastAPI 构建侦探 AI

from fastapi import FastAPI

app = FastAPI()

@app.get("/investigate")
def investigate_case(clue: str):
    if "fingerprint" in clue.lower():
        return {"result": "This fingerprint matches the suspect!"}
    else:
        return {"result": "No strong evidence found yet."}

启动:

uvicorn main:app --reload

访问 http://127.0.0.1:8000/investigate?clue=fingerprint 来获取推理结果。


真实犯罪分析 AI:警方办案智能工具 🕵️‍♂️🔍

这个 AI 目标 是协助警方:

  • 分析案件线索
  • 推理犯罪嫌疑人
  • 整合多种证据
  • 预测犯罪模式
  • 提高破案效率

1. 核心技术架构

  1. 数据收集:案件记录、证词、物证、视频、音频
  2. 自然语言处理(NLP):分析警方报告、嫌疑人口供
  3. 知识图谱(Graph Database):构建案件、人物、证据之间的关系
  4. 机器学习/深度学习:用于模式识别、嫌疑人分析
  5. 计算机视觉(CV):监控视频分析、指纹识别
  6. 语音分析:测谎、声音识别

2. 数据收集与预处理

需要采集多种数据类型

  • 文本:警方案件报告、审讯记录、新闻
  • 视频:监控录像、行车记录仪、社交媒体
  • 音频:审讯录音、报警电话、对讲记录
  • 图像:指纹、车牌、人脸识别

示例:解析警方报告

import spacy
nlp = spacy.load("en_core_web_sm")

report = "On Feb 10, suspect John Doe was seen near the crime scene at 10:45 PM."
doc = nlp(report)

for ent in doc.ents:
    print(ent.text, ent.label_)  # 识别嫌疑人、时间、地点等

3. 知识图谱:建立案件关系网

使用 Neo4jNetworkX 构建犯罪网络,帮助分析嫌疑人与案件的关联。

import networkx as nx
import matplotlib.pyplot as plt

G = nx.Graph()

# 添加节点(人物、证据、地点)
G.add_nodes_from(["John Doe", "Knife", "Crime Scene", "Victim"])

# 添加关系(嫌疑人、作案工具、案发地点)
G.add_edges_from([
    ("John Doe", "Knife"), 
    ("Knife", "Crime Scene"), 
    ("Crime Scene", "Victim")
])

nx.draw(G, with_labels=True, node_color='lightblue', edge_color='gray', node_size=2000, font_size=10)
plt.show()

📌 作用:快速发现犯罪嫌疑人和关键证据之间的关系。


4. 计算机视觉:监控视频分析

  • 目标检测(YOLO)识别嫌疑人、车辆、物品
  • 人脸识别(FaceNet、DeepFace)比对嫌疑人身份
  • 车牌识别(OCR)查找犯罪车辆

示例:人脸识别

from deepface import DeepFace

result = DeepFace.verify("suspect.jpg", "database/suspect_123.jpg")
print(result["verified"])  # True 表示匹配成功

📌 作用:对比监控画面与犯罪嫌疑人数据库,锁定身份。


5. 语音分析:测谎 & 识别声纹

  • 测谎 AI:分析语气、音调、停顿模式,检测是否撒谎
  • 声纹识别:确认说话人身份

示例:使用 librosa 处理审讯录音

import librosa

audio_file = "interrogation.wav"
y, sr = librosa.load(audio_file, sr=16000)

# 提取特征(MFCC 语音特征)
mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
print(mfcc.shape)

📌 作用:识别撒谎者,或者比对录音中的声音与犯罪数据库。


6. AI 预测犯罪模式

基于历史犯罪数据,使用 机器学习 预测下一步可能的犯罪行为。

示例:XGBoost 预测犯罪

import xgboost as xgb
from sklearn.model_selection import train_test_split

# 数据集(犯罪时间、地点、嫌疑人特征)
X = crime_data[["time", "location", "suspect_age", "crime_type"]]
y = crime_data["repeat_offender"]  # 预测是否为惯犯

# 训练模型
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = xgb.XGBClassifier(n_estimators=100, max_depth=5, learning_rate=0.1)
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

📌 作用:帮助警方提前预防高危犯罪分子。


7. 部署 AI 系统

可以将 AI 集成到警方系统,提供智能查询和实时分析:

  • FastAPI 部署 AI 推理系统
  • 与警方数据库对接
  • 提供 Web 界面或移动端应用

示例:FastAPI 侦探 AI

from fastapi import FastAPI

app = FastAPI()

@app.get("/analyze")
def analyze_case(suspect: str):
    # 简单返回嫌疑人信息(实际应调用数据库和 AI 推理模型)
    return {"suspect": suspect, "status": "under investigation"}

# 运行 API
uvicorn.run(app, host="0.0.0.0", port=8000)

📌 作用:让警方随时随地使用 AI 办案。


AI 预测犯罪:智能分析高危犯罪模式 🚔🔍

AI 预测犯罪的核心目标是:

  1. 识别高危犯罪分子(惯犯、潜在犯罪嫌疑人)
  2. 预测犯罪热点区域(高发地区、时间段)
  3. 分析犯罪模式(不同类型犯罪的特征)
  4. 优化警力部署(提前预防可能的案件)

1. 预测犯罪的核心数据

预测犯罪需要整合多个数据源

  • 历史犯罪记录(时间、地点、作案手法、嫌疑人特征)
  • 人口统计数据(年龄、职业、犯罪背景)
  • 环境因素(经济状况、治安情况)
  • 社交网络(嫌疑人关系、黑市交易)
  • 实时数据(社交媒体、报警电话、监控视频)

2. 数据预处理

(1)数据清洗

  • 处理缺失值、去除重复数据
  • 统一时间格式(案件发生时间)
  • 标准化地理信息(经纬度、地址)

(2)特征工程

  • 时间特征:犯罪发生的时间段(白天/夜晚、节假日/工作日)
  • 地点特征:高危犯罪区域(城市中心、贫民区)
  • 个人特征:年龄、性别、犯罪记录
  • 社交特征:嫌疑人是否与已知犯罪团伙有关
import pandas as pd

# 读取犯罪数据
crime_data = pd.read_csv("crime_records.csv")

# 处理时间数据
crime_data["datetime"] = pd.to_datetime(crime_data["datetime"])
crime_data["hour"] = crime_data["datetime"].dt.hour
crime_data["day_of_week"] = crime_data["datetime"].dt.dayofweek
crime_data["month"] = crime_data["datetime"].dt.month

# 处理地理信息
crime_data["latitude"] = crime_data["latitude"].fillna(crime_data["latitude"].median())
crime_data["longitude"] = crime_data["longitude"].fillna(crime_data["longitude"].median())

print(crime_data.head())

3. 机器学习模型

(1)XGBoost 预测犯罪嫌疑人

XGBoost 是一种强大的决策树模型,适用于犯罪预测。

import xgboost as xgb
from sklearn.model_selection import train_test_split

# 选择特征
X = crime_data[["hour", "day_of_week", "month", "latitude", "longitude", "crime_type"]]
y = crime_data["repeat_offender"]  # 目标变量:是否为惯犯

# 数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练 XGBoost 模型
model = xgb.XGBClassifier(n_estimators=100, max_depth=5, learning_rate=0.1)
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

📌 作用:根据犯罪记录预测某人是否会再次犯罪。


(2)深度学习 LSTM 预测犯罪趋势

LSTM(长短时记忆网络)适合处理时间序列数据,可以用来预测某地未来的犯罪发生率。

import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense

# 假设我们有过去 30 天的犯罪数据
time_steps = 30  
X_train = np.random.rand(1000, time_steps, 1)  # 1000 个样本,每个样本包含 30 天的数据
y_train = np.random.rand(1000, 1)  # 预测未来一天的犯罪率

# 构建 LSTM 模型
model = Sequential([
    LSTM(50, return_sequences=True, input_shape=(time_steps, 1)),
    LSTM(50),
    Dense(1, activation="linear")
])

model.compile(optimizer="adam", loss="mse")
model.fit(X_train, y_train, epochs=10, batch_size=32)

📌 作用:基于过去犯罪数据预测未来犯罪趋势。


4. 预测高危犯罪区域

使用 热力图 可视化犯罪高发地,帮助警方优化巡逻路线。

import folium
from folium.plugins import HeatMap

# 读取数据
crime_map = folium.Map(location=[37.77, -122.42], zoom_start=12)  # 以旧金山为例
heat_data = [[row["latitude"], row["longitude"]] for _, row in crime_data.iterrows()]

# 生成热力图
HeatMap(heat_data).add_to(crime_map)

crime_map.save("crime_heatmap.html")  # 保存 HTML

📌 作用:帮助警方合理部署警力,减少犯罪发生。


5. 预测未来犯罪 & 预警

(1)基于社交网络分析犯罪团伙

使用 图数据库(Neo4j)分析嫌疑人社交网络,发现潜在犯罪组织。

from py2neo import Graph

# 连接 Neo4j 数据库
graph = Graph("bolt://localhost:7687", auth=("neo4j", "password"))

# 查找某个嫌疑人的关系网络
query = """
MATCH (p:Person)-[:ASSOCIATED_WITH]-(c:Crime)
WHERE p.name = 'John Doe'
RETURN c
"""
result = graph.run(query)
print(result.data())

📌 作用:发现隐藏的犯罪网络,提前预警可能的犯罪活动。


(2)AI 自动报警系统

如果某地区犯罪概率过高,AI 自动触发预警

threshold = 0.8  # 设定犯罪概率警戒线
predicted_crime_rate = model.predict([[22, 4, 2, 37.77, -122.42, "robbery"]])[0]

if predicted_crime_rate > threshold:
    print("⚠️ 该地区未来 24 小时内可能发生犯罪,请加强巡逻!")

📌 作用:AI 预测高风险地区,提醒警方加强安保。


 精准嫌疑人识别 AI 🕵️‍♂️🔍

AI 可以帮助警方精准识别犯罪嫌疑人,核心技术包括:

  1. 历史数据分析:识别惯犯、高危人群
  2. 行为模式分析:监控异常活动、反常行为
  3. 社交网络分析:追踪犯罪团伙、同伙关系
  4. 生物识别技术:人脸识别、指纹识别、语音分析
  5. 大数据关联分析:整合交易记录、监控视频、通讯数据

1. 历史数据分析:锁定惯犯

通过分析犯罪记录数据库,AI 可以计算某人的犯罪概率

import xgboost as xgb
from sklearn.model_selection import train_test_split

# 训练数据
X = crime_data[["age", "prior_arrests", "crime_type", "location_risk"]]
y = crime_data["is_suspect"]  # 目标变量:是否为嫌疑人

# 训练 XGBoost 模型
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = xgb.XGBClassifier(n_estimators=100, max_depth=5, learning_rate=0.1)
model.fit(X_train, y_train)

# 预测某人是否可能犯罪
person = [[32, 5, "burglary", "high"]]
risk_score = model.predict_proba(person)[0][1]  # 计算犯罪概率
print(f"犯罪风险评分: {risk_score:.2f}")

📌 作用:快速评估某人的犯罪风险。


2. 行为模式分析:检测异常行为

  • 银行交易异常:大额现金流动、频繁取款
  • 地理位置异常:高危区域反复出入
  • 社交媒体活动:极端言论、威胁信息

示例:分析 GPS 轨迹发现异常行为

import pandas as pd
from geopy.distance import geodesic

# GPS 记录(嫌疑人位置数据)
gps_data = pd.read_csv("gps_tracking.csv")

# 计算行程距离
gps_data["prev_lat"] = gps_data["latitude"].shift(1)
gps_data["prev_lon"] = gps_data["longitude"].shift(1)

gps_data["distance"] = gps_data.apply(
    lambda row: geodesic((row["prev_lat"], row["prev_lon"]), (row["latitude"], row["longitude"])).km 
    if pd.notnull(row["prev_lat"]) else 0, axis=1
)

# 发现异常活动(短时间内大幅度移动)
suspicious_movements = gps_data[gps_data["distance"] > 50]
print(suspicious_movements)

📌 作用:发现潜在逃犯或非法活动者。


3. 社交网络分析:锁定犯罪团伙

利用 图数据库(Neo4j) 分析嫌疑人与已知犯罪团伙的关系。

from py2neo import Graph

# 连接 Neo4j
graph = Graph("bolt://localhost:7687", auth=("neo4j", "password"))

# 查询某人的犯罪网络
query = """
MATCH (p:Person)-[:ASSOCIATED_WITH]-(c:Crime)
WHERE p.name = 'John Doe'
RETURN c
"""
result = graph.run(query)
print(result.data())

📌 作用:发现嫌疑人是否与犯罪集团有联系。


4. 生物识别:人脸、指纹、语音识别

(1)人脸识别

使用 FaceNetDeepFace 识别犯罪嫌疑人。

from deepface import DeepFace

result = DeepFace.verify("suspect.jpg", "database/suspect_123.jpg")
print(result["verified"])  # True 表示匹配成功

📌 作用:对比监控画面与嫌疑人数据库。


(2)指纹识别

import cv2

# 读取指纹图像
fingerprint = cv2.imread("fingerprint.jpg", 0)

# 进行边缘检测
edges = cv2.Canny(fingerprint, 50, 200)

# 显示结果
cv2.imshow("Fingerprint Edges", edges)
cv2.waitKey(0)

📌 作用:确认嫌疑人是否触碰过犯罪现场物品。


(3)语音识别

import librosa

audio_file = "suspect_voice.wav"
y, sr = librosa.load(audio_file, sr=16000)

# 提取特征(MFCC 语音特征)
mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
print(mfcc.shape)

📌 作用:比对审讯录音,识别嫌疑人。


5. 大数据分析:整合多种数据源

  • 信用卡交易(异常购物行为)
  • 社交媒体(极端言论、威胁信息)
  • 公共交通记录(逃亡路线)
  • 智能监控(人脸识别、车辆识别)
# 结合不同数据源,分析嫌疑人行为
suspect_profile = {
    "name": "John Doe",
    "age": 32,
    "crime_history": True,
    "financial_risk": "high",
    "social_connections": ["known_criminal_1", "known_criminal_2"],
}

# 计算综合犯罪风险评分
risk_score = sum([
    0.4 if suspect_profile["crime_history"] else 0,
    0.3 if suspect_profile["financial_risk"] == "high" else 0,
    0.3 if len(suspect_profile["social_connections"]) > 1 else 0,
])

print(f"综合犯罪风险评分: {risk_score:.2f}")

📌 作用:融合多种数据,提高识别精准度。


犯罪模式 AI 分析系统 🕵️‍♂️📊

AI 可以帮助警方深入分析犯罪模式,发现规律、预测趋势、优化侦查方向,主要技术包括:

  1. 历史数据挖掘:发现犯罪高发时段、地点、作案方式
  2. 行为模式分析:分析嫌疑人行踪、异常行为、逃跑路线
  3. 社交网络分析:挖掘犯罪团伙关系,找到幕后主使
  4. 犯罪趋势预测:利用机器学习预测下一次犯罪可能发生的时间和地点

1. 历史数据挖掘:发现犯罪规律

(1)统计犯罪高发时间

分析不同时间段的犯罪率,找到高危时段

import pandas as pd
import matplotlib.pyplot as plt

# 读取犯罪数据
crime_data = pd.read_csv("crime_records.csv")
crime_data["datetime"] = pd.to_datetime(crime_data["datetime"])
crime_data["hour"] = crime_data["datetime"].dt.hour

# 统计每小时的犯罪数量
crime_by_hour = crime_data["hour"].value_counts().sort_index()

# 绘制犯罪时间分布图
plt.figure(figsize=(10, 5))
plt.plot(crime_by_hour.index, crime_by_hour.values, marker='o', linestyle='-')
plt.xlabel("小时")
plt.ylabel("犯罪数量")
plt.title("不同时间段的犯罪发生率")
plt.grid()
plt.show()

📌 作用:找出夜间、高峰期的犯罪趋势,提前部署警力。


(2)犯罪地点热力图

绘制犯罪高发区域,帮助警方精准部署资源。

import folium
from folium.plugins import HeatMap

# 生成地图
crime_map = folium.Map(location=[37.77, -122.42], zoom_start=12)  # 以旧金山为例
heat_data = [[row["latitude"], row["longitude"]] for _, row in crime_data.iterrows()]

# 添加热力图
HeatMap(heat_data).add_to(crime_map)

# 保存 HTML 文件
crime_map.save("crime_heatmap.html")

📌 作用:找到犯罪多发地点,提高巡逻效率。


2. 行为模式分析:检测嫌疑人异常行为

(1)GPS 轨迹分析:识别可疑移动

  • 短时间内大幅度移动(可能是逃亡)
  • 频繁往返特定地点(可能是犯罪据点)
from geopy.distance import geodesic

# 计算行程距离
crime_data["prev_lat"] = crime_data["latitude"].shift(1)
crime_data["prev_lon"] = crime_data["longitude"].shift(1)

crime_data["distance"] = crime_data.apply(
    lambda row: geodesic((row["prev_lat"], row["prev_lon"]), (row["latitude"], row["longitude"])).km 
    if pd.notnull(row["prev_lat"]) else 0, axis=1
)

# 筛选异常行为(单次移动超过 50 公里)
suspicious_movements = crime_data[crime_data["distance"] > 50]
print(suspicious_movements)

📌 作用:发现潜在逃犯或走私路线。


(2)交易记录分析:检测可疑资金流动

AI 可以分析银行交易、加密货币支付、黑市交易,发现洗钱、毒品交易等犯罪行为。

import numpy as np

# 生成模拟交易数据
transactions = pd.DataFrame({
    "user_id": np.random.randint(1, 1000, 500),
    "amount": np.random.uniform(10, 5000, 500),
    "is_suspicious": np.random.choice([0, 1], size=500, p=[0.95, 0.05])
})

# 统计高风险交易
suspicious_transactions = transactions[transactions["amount"] > 3000]
print(suspicious_transactions)

📌 作用:检测大额、频繁的可疑交易。


3. 社交网络分析:发现犯罪团伙

AI 可以分析嫌疑人的社交关系,找出犯罪网络核心人物

from py2neo import Graph

# 连接 Neo4j
graph = Graph("bolt://localhost:7687", auth=("neo4j", "password"))

# 查询某嫌疑人的犯罪网络
query = """
MATCH (p:Person)-[:ASSOCIATED_WITH]-(c:Crime)
WHERE p.name = 'John Doe'
RETURN c
"""
result = graph.run(query)
print(result.data())

📌 作用:找出幕后黑手,打击犯罪组织。


4. 犯罪趋势预测

(1)LSTM 预测未来犯罪趋势

LSTM(长短时记忆网络)适用于时间序列数据,可以预测未来犯罪率。

import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense

# 模拟过去 30 天的犯罪数据
time_steps = 30  
X_train = np.random.rand(1000, time_steps, 1)  
y_train = np.random.rand(1000, 1)  

# 构建 LSTM 模型
model = Sequential([
    LSTM(50, return_sequences=True, input_shape=(time_steps, 1)),
    LSTM(50),
    Dense(1, activation="linear")
])

model.compile(optimizer="adam", loss="mse")
model.fit(X_train, y_train, epochs=10, batch_size=32)

📌 作用:预测未来犯罪高发期。


识别犯罪团伙核心人物 AI 🕵️‍♂️🔗

要精准识别犯罪团伙的核心人物,AI 需要分析社交网络、通讯记录、大数据关系,找出幕后黑手


1. 社交网络分析(SNA):找出核心犯罪分子

AI 通过构建犯罪团伙的社交网络图,利用 PageRank 算法识别关键人物。

(1)构建犯罪网络

假设有通话记录、资金交易、社交平台互动数据,我们可以用图数据库(Neo4j)构建关系网。

from py2neo import Graph

# 连接 Neo4j
graph = Graph("bolt://localhost:7687", auth=("neo4j", "password"))

# 查询某犯罪团伙的社交网络
query = """
MATCH (p1:Person)-[:COMMUNICATES_WITH|TRANSACTS_WITH]-(p2:Person)
RETURN p1.name, p2.name
"""
result = graph.run(query)
print(result.data())

📌 作用:分析团伙成员之间的通话、交易、社交关系


(2)计算 PageRank 找出核心人物

PageRank 算法可以找出影响力最大的嫌疑人(可能是幕后主使)。

query = """
CALL gds.pageRank.stream('crime_network')
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY score DESC
LIMIT 5
"""
result = graph.run(query)
print(result.data())

📌 作用:评分越高,说明此人可能是犯罪团伙的核心领导者


2. 通讯记录分析:发现幕后指挥者

犯罪团伙的核心人物通常是通讯频率高、信息流动中心的人。

(1)分析电话通话频率

import pandas as pd

# 读取通话记录
calls = pd.read_csv("call_records.csv")

# 统计每个人的通话次数
call_counts = calls["caller_id"].value_counts()
print(call_counts.head(10))

📌 作用:找出通话最多的人,可能是犯罪头目。


(2)分析异常通讯行为

  • 频繁更换号码:规避追踪
  • 深夜联系:隐藏交流
  • 单向通讯:只下达命令,不接收反馈
# 找出单向通讯的用户(他们只打电话,不接电话)
one_way_calls = calls.groupby("caller_id").filter(lambda x: x["receiver_id"].nunique() == 1)
print(one_way_calls)

📌 作用:可能是幕后指挥者,他们通常只下达命令,而不会回复信息。


3. 资金交易分析:找出洗钱网络

幕后主使往往负责资金流动,可以通过交易记录找出谁在分发赃款

(1)分析资金流向

# 读取交易数据
transactions = pd.read_csv("transactions.csv")

# 找出资金流向最多的人
top_senders = transactions["sender_id"].value_counts().head(10)
top_receivers = transactions["receiver_id"].value_counts().head(10)

print("资金流出最多的人:\n", top_senders)
print("资金流入最多的人:\n", top_receivers)

📌 作用资金流出最多的人可能是黑帮财务官,资金流入最多的人可能是洗钱账户。


(2)检测可疑交易

# 找出交易金额异常高的记录
suspicious_transactions = transactions[transactions["amount"] > 10000]
print(suspicious_transactions)

📌 作用:锁定可疑的大额转账,排查幕后资金来源。


4. 结合 AI 进行高危人物预测

结合 社交网络分析(SNA)+ 资金流动 + 通讯模式,用机器学习训练一个模型预测高危嫌疑人

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split

# 特征数据
X = crime_data[["call_count", "money_transferred", "social_network_score"]]
y = crime_data["is_core_member"]  # 是否为核心犯罪分子

# 训练模型
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)

# 预测某人是否为核心成员
person = [[50, 100000, 0.9]]  # 50 次通话,大额资金交易,社交影响力高
prediction = model.predict(person)
print(f"该嫌疑人是否是核心人物:{prediction[0]}")

📌 作用:AI 计算犯罪嫌疑人的核心程度,锁定幕后黑手。


备注:文章仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值