Sensitivity Analysis Chapter 05 Note

本文深入探讨敏感性分析在决策制定中的应用,包括一维和二维敏感性分析的方法,如何通过龙卷风图和蜘蛛图识别关键变量,以及不确定性分析中的仿真优化。通过实例展示如何评估不同决策策略下预期货币价值的变动。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Purpose

To analyse what really matters


One-Way Sensitivity Analysis

Toprank

Base value:最可能的变量值

Low value:最低的变量值

High value:最高的变量值

  • 全部变量设置为:Low - Base - High 分别计算outcome
  • 其他变量设置为Base value(fixed), 选定的变量分别设置为 [Low, High],得到outcome
  • 绘图(Tornado diagram, Spider diagram)

Tornado Diagram

  • Purpose: 对多个variable同时进行one-way sensitivity analysis的比较
  • Longest bar--- Topest rank---- Most sensitive variable 
  • 敏感的变量需要重点考虑,其他的leave at their base values
  • 横坐标: profit(outcome) ; 纵坐标:rank

Spider Diagram

  • Perform a one-way sensitivity analysis for all variables.
  • 斜率越大,越敏感


Two-Way Sensitivity Analysis

  • 建立公式 Outcome  = ......
  • 将其他变量取 Base value 得到 Outcome(x1, x2)
  • 比较 decision strategy : Outcome(x1, x2) = .....    =>  x2 = f(x1)
  •  绘制 x2 = f(x1)曲线(indifferent curve无差异曲线,在该曲线上,两个decision strategy无差异)


Sensitivity to Probabilities

假设uncertain event 发生的概率,根据决策树求EMV,比较decision strategy画图分析

Example1 :

EMV (purchase) = q(3500r-22500)-11000r+25475
EMV (not purchase) =  4200

Example 2:

(约束:p > 0.15;q > 0.35)

根据上式,画出3条indifferent line


Uncertainty Analysis

根据分布进行仿真优化决策

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值