PyTorch 只训练网络分类器的迁移学习方式

torchvision.models 里面有很多已经训练好的经典网络,我们做迁移学习的时候可以使用这些预训练的神经网络的卷积部分做特征提取器,训练时,只需迭代更新最后的全连接层,即分类器。

一、首先从 torchvision.models 白嫖一个预训练好的 AlexNet:
from torchvision import models

alexnet = models.alexnet(pretrained=True)  # 初始化模型类实例,并自动下载预训练的模型参数

print(alexnet)

同大多数神经网络的总体结构一样,AlexNet 分为 features 和 classifier 两大模块。其中 features 模块负责提取特征,以卷积层为主;classifier 模块负责实现分类,以全连接层为主:

  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
    (1): ReLU(inplace=True)
    (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (4): ReLU(inplace=True)
    (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (7): ReLU(inplace=True)
    (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (9): ReLU(inplace=True)
    (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace=True)
    (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(6, 6))
  (classifier): Sequential(
    (0): Dropout(p=0.5, inplace=False)
    (1): Linear(in_features=9216, out_features=4096, bias=True)
    (2): ReLU(inplace=True)
    (3): Dropout(p=0.5, inplace=False)
    (4): Linear(in_features=4096, out_features=4096, bias=True)
    (5): ReLU(inplace=True)
    (6): Linear(in_features=4096, out_features=1000, bias=True)
  )
)

如果已经有了本地的预训练权重,我们可以不重新写网络结构就能加载预训练模型:

alexnet = models.alexnet(pretrained=False)  # 只初始化模型类实例,不下载参数
alexnet.load_state_dict(torch.load(r'models/alexnet.pth'))  # 加载本地的预训练模型的参数
二、冻结卷积层的参数更新

上面的 AlexNet 分类器输出 1000 个分类,我们不需要。为了构造一个二元分类器,我们需要重新定义 AlexNet 的 classifier 模块。前两个全连接层的参数可以保持不变,最后一层的输出改为 2:

for param in alexnet.parameters():
    # 冻结所有参数的更新
    param.requires_grad = False
    
alexnet.classifier = nn.Sequential(
    # 重新定义分类层,参数默认 requires_grad=True
    nn.Dropout(),
    nn.Linear(256*6*6, 4096),
    nn.ReLU(inplace=True),
    nn.Dropout(),
    nn.Linear(4096, 4096),
    nn.ReLU(inplace=True),
    nn.Linear(4096, 2),
)

循环遍历 AlexNet 中所有的参数,将参数的 requires_grad 设置为 False,这样做可以限制这些参数的更新。

而重新定义的 classifier 模块的参数则默认保持 requires_grad=True。这样便可以保证在之后的迁移学习中,只更新全连接层的参数,而不更新特征提取层的参数。

三、迁移学习训练
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(alexnet.classifier.parameters(), lr=0.001, momentum=0.9)   # 只更新分类层的参数
multisteplr = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[2,3], gamma=0.65)  # lr 衰减策略

训练代码实例:

CUDA = torch.cuda.is_available()

if CUDA:
    alexnet = alexnet.cuda()
  • data_loader(cifar-10):
trans = transforms.Compose([
	    transforms.ToTensor(),  # 转成 Tensor 格式
	    transforms.Normalize(mean=[0.485, 0.456, 0.406], 
	                         std=[0.229, 0.224, 0.225])
	    ])

train_set = datasets.CIFAR10(root="./datasets/cifar-10",
                                 train=True,
                                 transform=trans,  # 原始是 PIL Image 格式
                                 download=True)
test_set = datasets.CIFAR10(root="./datasets/cifar-10",
                            train=False,
                            transform=trans,
                            download=True)

train_loader = DataLoader(train_set, batch_size=64, shuffle=True)
test_loader = DataLoader(test_set, batch_size=64, shuffle=True)
  • train:
def train(model, criterion, optimizer, lr_step=None, epochs=3):
    for epoch in range(epochs):
        running_loss = 0.0
        for i, data in enumerate(train_loader, 0):
            inputs, labels = data
            if CUDA:
                inputs, labels = inputs.cuda(), labels.cuda()
                
            optimizer.zero_grad()
            output = model(inputs)
            loss = criterion(output, labels)
            loss.backward()
            optimizer.step()
            
            running_loss += loss.item()
            if i % 10 == 9:
                print("[Epoch:%d, Batch:%d] Loss: %.3f" % (epoch+1, i+1, running_loss/100))
                running_loss = 0.0

        if lr_step:
            lr_step.step()
            print(f"Lr: {optimizer.state_dict()['param_groups'][0]['lr']}")
              
    print("finish training.")
  • test:
def test(test_loader, model):
    correct = 0
    total = 0
    for data in test_loader:
        images, labels = data
        if CUDA:
            images, labels = images.cuda(), labels.cuda()
        
        model.eval()
        with torch.no_grad():
            outputs = model(images)
            
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum()
    print(f'Accuracy on the test set: {100 * correct /total}%')
  • 5
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Skr.B

WUHOOO~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值