题目
在已知水准点A、B(其高程无误差)间布设水准路线,如图3-5所示。路线长为 S 1 = 2 S_1=2 S1=2km, S 2 = 6 S_2=6 S2=6km, S 3 = 4 S_3=4 S3=4km,设每千米观测高差中误差 σ = 1.0 \sigma=1.0 σ=1.0mm,试求:

(1)将闭合差按距离分配之后
P
1
P_1
P1、
P
2
P_2
P2两点间高差的中误差;
(2)分配闭合差后
P
1
P_1
P1点高程的中误差。
解:(1)由误差传播定律易知,路段1、2、3的测量中误差分别为 2 \sqrt2 2mm、 6 \sqrt6 6mm、 4 \sqrt4 4mm。(以第一段为例: σ 1 = σ 2 + σ 2 = 2 \sigma_1=\sqrt{\sigma^2+\sigma^2}=\sqrt2 σ1=σ2+σ2=2mm)
又
H
B
=
H
A
+
H
1
+
H
2
+
H
3
H_B=H_A+H_1+H_2+H_3
HB=HA+H1+H2+H3
得
H
B
H_B
HB的测量误差
σ
B
=
σ
1
2
+
σ
2
2
+
σ
3
2
=
2
3
m
m
\sigma_B=\sqrt{\sigma_1^2+\sigma_2^2+\sigma_3^2}=2\sqrt3mm
σB=σ12+σ22+σ32=23mm
由水准等精度观测知,误差应以路线长度为权重,按比例分配,分别为2、6、4。
则
σ
‾
2
=
6
12
σ
B
=
3
m
m
\overline{\sigma}_2=\frac{6}{12}\sigma_B=\sqrt3mm
σ2=126σB=3mm
(2)有了第(1)问的误差分配并修正之后,得到修正值 σ ‾ 1 = 2 12 σ B = 3 3 \overline{\sigma}_1=\frac{2}{12}\sigma_B=\frac{\sqrt3}{3} σ1=122σB=33mm, σ ‾ 3 = 4 12 σ B = 2 3 3 \overline{\sigma}_3=\frac{4}{12}\sigma_B=\frac{2\sqrt3}{3} σ3=124σB=323mm。由式 H P 1 = H A + H ‾ 1 H_{P_1}=H_A+\overline{H}_1 HP1=HA+H1可计算 P 1 P_1 P1的高程,再误差传播定律得到 P 1 P_1 P1点高程的中误差 3 3 \frac{\sqrt3}{3} 33mm。
同理使用式 H P 1 = H B − H ‾ 2 − H ‾ 3 H_{P_1}=H_B-\overline{H}_2-\overline{H}_3 HP1=HB−H2−H3也会得到一个结果。但是经过计算发现,两个结果不同。答案是错误的。
思考
为了找到原因,我们从另一个角度重新看第(1)问。
要计算 σ ‾ 2 \overline{\sigma}_2 σ2,可以认为我们对 H 2 H_2 H2进行了两次观测,分别是直接观测 H 2 H_2 H2,和间接测量 H 2 = H B − H A − H 1 − H 3 H_2=H_B-H_A-H_1-H_3 H2=HB−HA−H1−H3,这也符合存在一次多余观测的事实。
那么两次测量值,怎样取最终结果?当然要先根据它们的测量误差分配权重。
由误差传播定律易知,两次测量结果的中误差分别为
6
\sqrt6
6mm和
σ
1
2
+
σ
3
2
=
6
\sqrt{\sigma_1^2+\sigma_3^2}=\sqrt6
σ12+σ32=6mm,误差相同,权重相同,即:
H
‾
2
=
1
2
H
2
+
1
2
(
H
B
−
H
A
−
H
1
−
H
3
)
\overline{H}_2=\frac{1}{2}H_2+\frac{1}{2}\left(H_B-H_A-H_1-H_3\right)
H2=21H2+21(HB−HA−H1−H3)
则 σ ‾ 2 = 1 4 σ 2 2 + 1 4 σ 1 2 + 1 4 σ 3 2 = 3 m m \overline{\sigma}_2=\sqrt{\frac{1}{4}\sigma_2^2+\frac{1}{4}\sigma_1^2+\frac{1}{4}\sigma_3^2}=\sqrt3mm σ2=41σ22+41σ12+41σ32=3mm
同理,对于
H
‾
1
\overline{H}_1
H1可得:
H
‾
1
=
5
6
H
1
+
1
6
(
H
B
−
H
A
−
H
2
−
H
3
)
\overline{H}_1=\frac{5}{6}H_1+\frac{1}{6}\left(H_B-H_A-H_2-H_3\right)
H1=65H1+61(HB−HA−H2−H3)
(当两次测量误差不同时,单位权取值参考结论https://blog.csdn.net/runtuandme/article/details/111866037#comments_14909815)
此时计算 σ ‾ 1 = 5 3 \overline{\sigma}_1=\sqrt{\frac{5}{3}} σ1=35mm。再由误差传播定律可得到 σ P 1 = σ ‾ 1 2 = 5 3 \sigma_{P_1}=\sqrt{\overline{\sigma}_1^2}=\sqrt{\frac{5}{3}} σP1=σ12=35mm
这个答案是正确的。
对于第二问,我们也可以看作对
H
P
1
H_{P_1}
HP1的两次测量,
H
P
1
=
H
A
+
H
1
H_{P_1}=H_A+H_1
HP1=HA+H1
H
P
1
=
H
B
−
H
2
−
H
3
H_{P_1}=H_B-H_2-H_3
HP1=HB−H2−H3
再分别计算中误差,计算权,同样得到
5
3
\sqrt{\frac{5}{3}}
35mm的结果。
小结
第(1)问的计算方法是错误的,答案正确属于巧合。按权重“分配误差改正值”可行,但不可按权重“分配误差精度”,精度不与权重成比例,应该按照误差传播定律严格计算。