参考博客:https://blog.csdn.net/wfei101/article/details/79672944
https://blog.csdn.net/u014380165/article/details/78006626
pytorch代码:https://github.com/miraclewkf/SENet-PyTorch
1. 为什么提出该网络?
普通的卷积网络通常是在特征图上的局部区域和特征维度上的信息进行聚合,使用一系列的卷积操作便可以使网络感受到全局信息。目前的研究大都从空间维度上来提升网络性能,本文作者提出一种考虑通道数方面的关系来提升性能的方法。
本文主要包括两个方面:Squeeze 和 Excitation。首先提取每一个通道上特征图的全局感受野,然后对其进行“特征重标定”,即通过学习的方法来提取每个通道的学习程度,从而提升程度大的抑制程度小的特征。
2. SENet模型
2.1 Squeeze
首先对原图做Ftr