SENet论文理解

SENet是一种引入通道注意力机制的卷积网络结构,通过Squeeze和Excitation操作来提升模型性能。Squeeze全局平均池化提取通道信息,Excitation通过全连接层学习通道重要性,再通过Scale对特征图进行加权,强调关键特征。
摘要由CSDN通过智能技术生成

参考博客:https://blog.csdn.net/wfei101/article/details/79672944

https://blog.csdn.net/u014380165/article/details/78006626

pytorch代码:https://github.com/miraclewkf/SENet-PyTorch

1. 为什么提出该网络?

普通的卷积网络通常是在特征图上的局部区域和特征维度上的信息进行聚合,使用一系列的卷积操作便可以使网络感受到全局信息。目前的研究大都从空间维度上来提升网络性能,本文作者提出一种考虑通道数方面的关系来提升性能的方法。

本文主要包括两个方面:Squeeze 和 Excitation。首先提取每一个通道上特征图的全局感受野,然后对其进行“特征重标定”,即通过学习的方法来提取每个通道的学习程度,从而提升程度大的抑制程度小的特征。

2. SENet模型

2.1 Squeeze

首先对原图做Ftr

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值