FCOS:Fully Convolutional One-Stage Object Detection--------论文理解

FCOS是一种无锚框的全卷积目标检测方法,它避免了锚框的计算复杂性和超参数敏感性,通过逐像素预测、FPN多尺度预测和中心性损失提高检测性能。FCOS在实验中展现出与锚框方法相当甚至更高的精度。
摘要由CSDN通过智能技术生成

参考博客:https://blog.csdn.net/qiu931110/article/details/89073244

1. 概述

论文提出了一种新的目标检测方法,通过像素预测方式的目标检测,类似于语义分割。

目前的目标检测都是基于锚框机制的,如two-stage的 Faster R-CNN等,one-stage的RetinaNet,SSD,YOLOv3等。相比之下,本文中提出的FCOS,既避免了预测框与锚框复杂的计算(如IOU的计算),也避免了锚框中一些超参数的设置(如yolov3中多个尺度,需要设置9个锚框的宽和高)。FCOS只需在最后进行NMS运算,即可与锚框机制的目标检测算法达到同样的精度,甚至更高。

2. 网络整体介绍

基于锚框的目标检测尽管已经取得了很好的效果,但仍然有以下几方面的缺点:

一,检测性能对锚箱的尺寸、长宽比和数量非常敏感。这些超参数需要仔细调整;

二,即使经过了对锚框精心的设计,当检测器遇到尺寸变化很大的物体时,泛化能力同样很差,尤其是针对小物体。
预定义的锚盒也妨碍了检测器的泛化能力,因为它们需要在具有不同物体尺寸或纵横比的新探测任务上进行重新设计。

三,输入图片上会产生很多锚框,导致负样本偏多。训练时候负样本过多会导致训练时候类别不均衡。

四,锚框数量多在计算IOU时同样会增加计算和内存。

最近,全

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值