遥感图像处理学习(12)之【论文:一种图像融合新方法】
前言
遥感系列第12篇。遥感图像处理方向的学习者可以参考或者复刻
几天前开通了博客园账号,https://www.cnblogs.com/hassle
博客园没有广告,自己设定的UI也更好看一些,之后就两边同步更新了
本文初编辑于2024年1月26日CSDN平台
总结:原论文提出了一种数据融合的新方法,使得模型使用HSI和LIDAR数据进行图像分类任务。
论文标题:Multimodal Fusion Transformer for Remote Sensing Image Classification
论文地址:https://arxiv.org/pdf/2203.16952.pdf
一、INTRODUCTION(介绍)
对数据集的探究:
遥感图像任务包括(但不限于)土地覆盖分类、林业、矿物勘探与测绘、物体/目标检测、环境监测、城市规划、生物多样性保护、灾害响应和管理。
但是,单一传感器数据往往不足以识别某些应用领域中感兴趣的对象。那么,可以使用多传感器设备进行同一区域的数据采集。
HSI能够提供对图像中丰富的光谱和空间信息,
光探测和测距(LiDAR)收集深度和强度信息,测量物体在地球表面的高程,允许区分具有相同光谱特征但高程不同的土地覆盖对象,如道路和屋顶内置水泥。
对传统方法的探究:
传统方法已广泛应用于HSI分类,即使训练样本有限。这些方法大多分为两步,首先,它们在特征空间中表示 HSI 数据以降低维度并提取一些信息量很大的特征;然后,提取的特征被发送到光谱分类器。
但是,当训练数据变得复杂时,传统方法会遇到性能瓶颈,因为它们在数据拟合和表示能力方面存在局限性。
对CNN方法的探究
基于深度学习的监督技术在RS图像分类Tasks中往往表现出优越性。深度学习方法可以平衡算法的准确性和稳健性。同时,浅层学习方法依赖于从训练或观察数据中获得的先验信息。
但是,CNN 几乎无法捕获序列属性,尤其是中间和长期依赖关系。这导致性能下降,尤其是当数据包含许多具有相似光谱特征的类时。
虽然,RNN可以通过按顺序逐波段累积来自 HSI 的光谱特征来准确建模,但是,因为 HSI 包含许多样本,RNN 不能同时训练模型,这限制了分类性能。
对Transformer方法的探究
虽然,Transformer 擅长捕获光谱特征中包含的信息,但是,它不能平等地表征局部语义元素,并且不能充分利用空间信息。
提出自己的方法
为了充分利用HSI和其他多模态数据来源的信息,如SAR、DSM、LiDAR和DSM,提出自己的网络MFT。
二、PRE-PROCESSING OF HSI AND LIDAR DATA(对HSI和LIDAR的预处理工作)
对数据集格式介绍
HSI数据格式是
X H : M × N × B X_H:M \times N \times B XH:M×N×B
M、N为空间二维坐标,B为光谱数
LIDAR数据格式是
X L : M × N