关于AAAMLP

Approaching (Almost) Any Machine Learning Problem,是Linkedin在2017年发表的一篇文章,介绍他建立的一个自动的机器学习框架,几乎可以解决任何机器学习问题,这篇文章曾火遍 Kaggle。

为了更加深入地了解与学习机器学习相关的知识,我将尝试翻译文章内容并重现文章中涉及的代码。以下为文章目录:

  • Setting up your working environment - 准备环境
  • Superivised vs unsupervised learning - 无监督和有监督学习
  • Corss-validation - 交叉检验
  • Evaluation metrics - 评估指标
  • Arranging machine learning projects - 安排机器学习项目
  • Approaching categorical varibales - 分类变量的探讨
  • Feature engineering - 特征工程
  • Feature selection - 特征选择
  • Hyperparameter optimization - 超参数优化
  • Approaching image classification & segmentation - 图像分类与分割方法
  • Approaching text classification / regression - 文本分类与回归方法
  • Approaching ensembling and stacking - 组合和堆叠方法
  • Approaching reproducible code & model serving - 可重复代码和模型方法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值