Approaching (Almost) Any Machine Learning Problem,是Linkedin在2017年发表的一篇文章,介绍他建立的一个自动的机器学习框架,几乎可以解决任何机器学习问题,这篇文章曾火遍 Kaggle。
为了更加深入地了解与学习机器学习相关的知识,我将尝试翻译文章内容并重现文章中涉及的代码。以下为文章目录:
- Setting up your working environment - 准备环境
- Superivised vs unsupervised learning - 无监督和有监督学习
- Corss-validation - 交叉检验
- Evaluation metrics - 评估指标
- Arranging machine learning projects - 安排机器学习项目
- Approaching categorical varibales - 分类变量的探讨
- Feature engineering - 特征工程
- Feature selection - 特征选择
- Hyperparameter optimization - 超参数优化
- Approaching image classification & segmentation - 图像分类与分割方法
- Approaching text classification / regression - 文本分类与回归方法
- Approaching ensembling and stacking - 组合和堆叠方法
- Approaching reproducible code & model serving - 可重复代码和模型方法