EM算法:对含有隐变量的概率模型参数的极大似然估计法;
每次迭代由两步组成:E步,求期望;M步,求极大;
EM算法与初值的选择有关,选择不同的初值可能得到不同的参数估计值;
其中Yjk表示样本j属于模型k的概率;apha(k)表示模型k在整个模型中占的比例;
下例为从网上下的高斯混合模型(由两个高斯模型组成)参数获得的mat
EM算法:对含有隐变量的概率模型参数的极大似然估计法;
每次迭代由两步组成:E步,求期望;M步,求极大;
EM算法与初值的选择有关,选择不同的初值可能得到不同的参数估计值;
其中Yjk表示样本j属于模型k的概率;apha(k)表示模型k在整个模型中占的比例;
下例为从网上下的高斯混合模型(由两个高斯模型组成)参数获得的mat