统计学习方法---高斯混合模型参数估计的EM算法

本文介绍了一种使用EM算法来估计高斯混合模型参数的方法,特别是在E步和M步中如何进行计算。代码示例展示了在MATLAB中实现该过程,用于确定两个固定均值为0的高斯分布的方差。
摘要由CSDN通过智能技术生成

EM算法:对含有隐变量的概率模型参数的极大似然估计法;

               每次迭代由两步组成:E步,求期望;M步,求极大;


EM算法与初值的选择有关,选择不同的初值可能得到不同的参数估计值;


               

其中Yjk表示样本j属于模型k的概率;apha(k)表示模型k在整个模型中占的比例;


下例为从网上下的高斯混合模型(由两个高斯模型组成)参数获得的mat

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值