微分几何——曲线论

1. 正则参数曲线

正则参数曲线指在一个区间上单调递增的曲线,其中每个导数都不为零。

例题1:给出圆螺旋线的定义,并证明其为正则参数曲线

圆螺旋线可以用以下参数方程表示:
{ x ( t ) = a cos ⁡ ( t ) y ( t ) = a sin ⁡ ( t ) z ( t ) = b t ⟹ r ( t ) = ( . . . . . . ) \left \{ \begin{aligned} x(t) &= a\cos(t) \\ y(t) &= a\sin(t) \\ z(t) &= bt \end{aligned} \right. \Longrightarrow r(t) = (......) x(t)y(t)z(t)=acos(t)=asin(t)=btr(t)=(......)
其中, t t t 为参数, a a a b b b 是常数, a > 0 a>0 a>0
要证明原螺旋线为正则参数曲线
首先需要证明其为光滑曲线,即需要证明 x ( t ) x(t) x(t) y ( t ) y(t) y(t) z ( t ) z(t) z(t) 三个分量在整个定义域内可导。由于这三个函数都是三角函数的组合,因此它们在整个定义域内是无穷次可导的。
接下来需要证明曲线参数 t t t 是一个正则参数。在这里,需要证明 x ′ ( t ) x'(t) x(t) y ′ ( t ) y'(t) y(t) z ′ ( t ) z'(t) z(t) 这三个导数不同时为 0 0 0。有:
{ x ′ ( t ) = − a sin ⁡ ( t ) y ′ ( t ) = a cos ⁡ ( t ) z ′ ( t ) = b ⟹ r ′ ( t ) = ( . . . . . . ) \left \{ \begin{aligned} x'(t) &= -a\sin(t) \\ y'(t) &= a\cos(t) \\ z'(t) &= b \end{aligned} \right. \Longrightarrow r'(t) = (......) x(t)y(t)z(t)=asin(t)=acos(t)=br(t)=(......)
因为 a > 0 a > 0 a>0,所以 x ′ ( t ) x'(t) x(t) y ′ ( t ) y'(t) y(t) 在整个定义域内不同时为 0 0 0(当 t = 2 k π t=2k\pi t=2 k k k 为整数时, x ′ ( t ) = y ′ ( t ) = 0 x'(t) = y'(t) = 0 x(t)=y(t)=0,但是这些点是孤立的,不影响正则参数的定义)。而 z ′ ( t ) z'(t) z(t) 在整个定义域内都不等于 0 0 0,因此 t t t 是一个正则参数。
因此,原螺旋线是一个光滑的正则参数曲线。

例题2给出半三次曲线的定义,并证明其为正则参数曲线

半三次曲线可以用以下参数方程表示:
r ( t ) = ( x ( t ) , y ( t ) ) = ( t 2 , t 3 ) r(t) = (x(t), y(t)) = (t^2, t^3) r(t)=(x(t),y(t))=(t2,t3)
0 ≤ t ≤ 1 0 \leq t \leq 1 0t1
其中, t t t 为参数。
要证明半三次曲线为正则参数曲线,
首先需要证明其为光滑曲线,即需要证明 x ( t ) x(t) x(t) y ( t ) y(t) y(t) 两个分量在整个定义域内可导。由于这两个函数都是二次函数和三次函数的组合,因此它们在整个定义域内是两次可导的。
接下来需要证明曲线参数 t t t 是一个正则参数。在这里,需要证明 x ′ ( t ) x'(t) x(t) y ′ ( t ) y'(t) y(t) 这两个导数在整个定义域内不同时为 0 0 0。有:
x ′ ( t ) = 2 t x'(t) = 2t x(t)=2t
y ′ ( t ) = 3 t 2 y'(t) = 3t^2 y(t)=3t2
所以 x ′ ( t ) x'(t) x(t) y ′ ( t ) y'(t) y(t) 在整个定义域内不同时为 0 0 0。因此 t t t 是一个正则参数。
因此,半三次曲线是一个光滑的正则参数曲线。

2. 曲线的弧长

正则曲线 r ( t ) r(t) r(t)弧长 s s s 定义为:
s ( t ) = ∫ a t ∣ r ′ ( u ) ∣ d u s(t) = \int_{a}^{t}{|r'(u)|du} s(t)=atr(u)du
其中, a a a 是一个固定参数, t ∈ [ a , b ] t \in [a,b] t[a,b] t t t 是曲线的一个参数。 ∣ r ′ ( u ) ∣ |r'(u)| r(u) 表示曲线在 u u u 处的切向量的长度,是曲线的不变量

曲线的弧长是曲线上从初始点到终止点的距离,也就是曲线的长度。对于一条光滑曲线来说,弧长是一个非常重要的概念。它可以用来描述曲线的长度、曲率、速度、加速度等重要属性。弧长越大,曲线的长度就越长。曲线的弧长还经常被用来作为参数来表示曲线,这样的曲线参数称为弧长参数

d s = ∣ r ′ ( t ) ∣ d t ds = {|r'(t)|dt} \quad ds=r(t)dt 也是曲线的不变量,称为弧长元素

对于一条平面曲线而言,弧长可以用简单的勾股定理来计算。但是对于三维空间中的曲线,弧长不能简单地通过勾股定理来计算。因此,必须使用参数方程和积分的方式来计算弧长。

定理1 r = r ( t ) \mathbf{r} = \mathbf{r}(t) r=r(t)是一条正则曲线,则 t t t是弧长参数的充分必要条件是 ∣ r ′ ( t ) ∣ = 1 |\mathbf{r}'(t)| = 1 r(t)=1

3. 曲线的曲率和Frenet标架

正则曲线 r ( s ) r(s) r(s)曲率 κ \kappa κ 定义为曲线在某一点处的曲线局部弯曲的程度。

曲率是一个在曲线上变化的函数。曲率越大,表示曲线在该点的弯曲程度越大。

曲率可以从弧长参数 s s s 的定义中计算出来:
κ = ∣ d α d s ∣ \kappa = \left|\frac{d\alpha}{ds}\right| κ= dsdα

其中 α = r ′ ( s ) \alpha = r'(s) α=r(s) 表示曲线在 s 处的切向量, d α d s \dfrac{d\alpha}{ds} dsdα 表示 α \alpha α s s s 的导数,称为曲线的曲率向量。这种方法对于弧长参数化的曲线最为方便,因为此时 ∣ ∣ r ′ ( s ) ∣ ∣ = 1 ||r'(s)|| = 1 ∣∣r(s)∣∣=1

Frenet标架是描述曲线几何性质的一种标准工具,由一组正交基向量 α ( s ) \alpha(s) α(s) β ( s ) \beta(s) β(s) γ ( s ) \gamma(s) γ(s) 组成,这些向量被称为切向量、法向量和副法向量。Frenet标架的使用可以更精确地描述曲线弯曲和扭转的性质。

假设 r ( s ) r(s) r(s) 是一条光滑的曲线,其中 s s s 是弧长参数,并且 r ′ ( s ) r'(s) r(s) 表示曲线在 s s s 处处的单位切向量。那么,

Frenet标架由以下规则定义:

  1. 切向量: α ( s ) = r ′ ( s ) \alpha(s) = r'(s) α(s)=r(s)
  2. 法向量: β ( s ) = r ′ ′ ( s ) ∣ r ′ ′ ( s ) ∣ \beta(s) = \dfrac{r''(s)}{|r''(s)|} β(s)=r′′(s)r′′(s)
  3. 副法向量: γ ( s ) = α ( s ) × β ( s ) = r ′ ( s ) × r ′ ′ ( s ) ∣ r ′ ′ ( s ) ∣ \gamma(s) = \alpha(s) \times \beta(s) = \dfrac{r'(s) \times r''(s)}{|r''(s)|} γ(s)=α(s)×β(s)=r′′(s)r(s)×r′′(s)

对于一般参数 t t t ,Frenet标架由以下规则定义:

  1. α ( t ) = r ′ ( t ) ∣ r ′ ( t ) ∣ \alpha(t) = \dfrac{r'(t)}{|r'(t)|} α(t)=r(t)r(t)
  2. γ ( t ) = r ′ ( t ) × r ′ ′ ( t ) ∣ r ′ ( t ) × r ′ ′ ( t ) ∣ \gamma(t) = \dfrac{r'(t) \times r''(t)}{|r'(t) \times r''(t)|} γ(t)=r(t)×r′′(t)r(t)×r′′(t)
  3. β ( t ) = γ ( t ) × α ( t ) = ∣ r ′ ( t ) ∣ ∣ r ′ ( t ) × r ′ ′ ( t ) ∣ r ′ ′ ( t ) − r ′ ( t ) ⋅ r ′ ′ ( t ) ∣ r ′ ( t ) ∣ ⋅ ∣ r ′ ( t ) × r ′ ′ ( t ) ∣ r ′ ( t ) \beta(t) = \gamma(t) \times \alpha(t) = \dfrac{|r'(t)|}{|r'(t) \times r''(t)|}r''(t) - \dfrac{r'(t) \cdot r''(t)}{|r'(t)|\cdot|r'(t) \times r''(t)|}r'(t) β(t)=γ(t)×α(t)=r(t)×r′′(t)r(t)r′′(t)r(t)r(t)×r′′(t)r(t)r′′(t)r(t)
  4. κ ( t ) = ∣ r ′ ( t ) × r ′ ′ ( t ) ∣ ∣ r ′ ( t ) ∣ 3 \kappa(t) = \dfrac{|r'(t) \times r''(t)|}{|r'(t)|^3} κ(t)=r(t)3r(t)×r′′(t)

Frenet标架还有一些更深刻的性质。例如,曲线在某一点的曲率可以从切向量和法向量之间的夹角获得,挠率可以从切向量、法向量和副法向量之间的关系获得。这些属性可以用来描述曲线的特殊性质,并广泛应用于表达曲线的性质、计算机视觉和几何物理学等领域。

定理1 曲线是一条直线当且仅当它的曲率 κ = = 0 \kappa == 0 κ==0

曲线的曲率是曲线上某一点的曲线局部弯曲的程度。Frenet标架是一组正交向量,包括切向量、法向量和副法向量,用于描述曲线的几何特征。

4. 曲线的挠率和Frenet公式

正则曲线 r ( s ) r(s) r(s)挠率 τ \tau τ 定义为:
τ ( s ) = ( r ′ × r ′ ′ ) ( s ) ⋅ r ′ ′ ′ ( s ) ∣ ∣ r ′ × r ∣ ∣ 2 = − γ ′ ( s ) ⋅ β ( s ) \tau(s) = \dfrac{(r' \times r'')(s)\cdot r'''(s)}{||r' \times r||^2} = -\gamma'(s) \cdot \beta(s) τ(s)=∣∣r×r2(r×r′′)(s)r′′′(s)=γ(s)β(s)

其中, × \times × 表示向量的叉积, ⋅ \cdot 表示向量的点积, r r r 表示曲线的向量函数, r ′ r' r r ′ ′ r'' r′′ r ′ ′ ′ r''' r′′′ 分别表示 r r r 对弧长 s s s 的1-3阶导数。

挠率用来描述曲线沿法向的转动程度,如果挠率为正,则曲线朝右转,如果挠率为负,则曲线朝左转,如果挠率为零,则曲线是一个平面曲线。

定理1 设曲线不是一条直线,则曲线为平面曲线当且仅当它的挠率 τ = = 0 \tau == 0 τ==0

Frenet-Serret公式可以编写成矩阵形式。在曲线的某一点 s s s 处,Frenet-Serret矩阵由三个列向量组成,每个列向量对应于切向量 α ( s ) \alpha(s) α(s),法向量 β ( s ) \beta(s) β(s) 和副法向量 γ ( s ) \gamma(s) γ(s)。此矩阵被称为 F r e n e t Frenet Frenet 矩阵,并表示为:

F ( s ) = [ α ( s ) β ( s ) γ ( s ) ] F(s) = \begin{bmatrix} \alpha(s) \\ \beta(s) \\ \gamma(s) \end{bmatrix} F(s)= α(s)β(s)γ(s)

根据Frenet-Serret公式,矩阵F可以通过在曲线上沿着弧长 s s s 移动,将前一个矩阵与下一个矩阵连接而得到。即,如果一个曲线是可微的,则在任意弧长 s s s 处,有:

F ′ ( s ) = [ 0 κ ( s ) 0 − κ ( s ) 0 τ ( s ) 0 − τ ( s ) 0 ] F ( s ) F'(s) = \begin{bmatrix} 0 & \kappa(s) & 0\\ -\kappa(s) & 0 & \tau(s)\\ 0 & -\tau(s) & 0 \end{bmatrix} F(s) F(s)= 0κ(s)0κ(s)0τ(s)0τ(s)0 F(s)

其中 κ ( s ) \kappa(s) κ(s) τ ( s ) \tau(s) τ(s) 分别是曲线在 s s s 处的曲率和挠率。这个微分方程式被称为Frenet-Serret公式,有时也被称为Frenet-Serret方程式。

曲线的挠率是曲线呈现扭曲的程度。Frenet公式是一组方程,描述了曲线点的Frenet标架在不同点之间的变化。

5. 曲线论基本定理

曲线论基本定理包括:第一基本定理(切向量、法向量、副法向量共线)、第二基本定理(曲率和挠率之间的关系),以及相应的定理证明。

6. 曲线参数方程在一点的标准展开

曲线参数方程在一点的标准展开是使用Taylor展开通过一个点的曲线,
展开到三阶,并使用曲率和挠率表示高阶项。

7. 存在对应关系的曲线偶

曲线偶是具有相同曲率和挠率的两条弧。曲线偶之间的存在对应关系,即它们可以相互转化,这在曲线论中起着重要作用

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值