微积分-微分应用5(曲线绘制总结)

绘制曲线的指南

以下检查表旨在指导手工绘制曲线 y = f ( x ) y = f(x) y=f(x)。并非每个指标都适用于每个函数(例如,某个给定的曲线可能没有渐近线或对称性)。但这些指南提供了绘制显示函数最重要方面的曲线所需的所有信息。

A. 定义域 通常从确定函数 f ( x ) f(x) f(x) 的定义域 D D D 开始,即 f ( x ) f(x) f(x) 定义的 x x x 值的集合。

B. 截距 Y Y Y 截距是 f ( 0 ) f(0) f(0),这告诉我们曲线在哪里与 y y y 轴相交。要找到 x x x 截距,我们设 y = 0 y = 0 y=0 并求解 x x x。(如果方程难以求解,可以省略此步骤。)

C. 对称性
(i) 如果 f ( − x ) = f ( x ) f(-x) = f(x) f(x)=f(x) 对于定义域 D D D 内的所有 x x x 都成立,则该函数是偶函数,曲线关于 y y y 轴对称。这意味着我们的工作减少了一半。如果我们知道曲线在 x ≥ 0 x \geq 0 x0 时的样子,我们只需反映 y y y 轴以获取完整曲线。
例如: y = x 2 y = x^2 y=x2, y = x 4 y = x^4 y=x4, y = ∣ x ∣ y = |x| y=x, y = cos ⁡ x y = \cos x y=cosx.

(ii) 如果 f ( − x ) = − f ( x ) f(-x) = -f(x) f(x)=f(x) 对于定义域 D D D 内的所有 x x x 都成立,则该函数是奇函数,曲线关于原点对称。
例如: y = x y = x y=x, y = x 3 y = x^3 y=x3, y = x 5 y = x^5 y=x5, y = sin ⁡ x y = \sin x y=sinx.

(iii) 如果 f ( x + p ) = f ( x ) f(x + p) = f(x) f(x+p)=f(x) 对于定义域 D D D 内的所有 x x x 都成立,且 p p p 为正常数,则该函数是周期函数,最小此类数 p p p 称为周期。
例如: y = sin ⁡ x y = \sin x y=sinx 周期为 2 π 2\pi 2π, y = tan ⁡ x y = \tan x y=tanx 周期为 π \pi π

D. 渐近线
(i) 水平渐近线:回顾上一节,如果 lim ⁡ x → ∞ f ( x ) = L \lim_{x \to \infty} f(x) = L limxf(x)=L lim ⁡ x → − ∞ f ( x ) = L \lim_{x \to -\infty} f(x) = L limxf(x)=L,则 y = L y = L y=L 是水平渐近线。如果 lim ⁡ x → ∞ f ( x ) = ∞ \lim_{x \to \infty} f(x) = \infty limxf(x)= lim ⁡ x → − ∞ f ( x ) = ∞ \lim_{x \to -\infty} f(x) = \infty limxf(x)=,那么我们没有右侧的渐近线,但这仍然是绘制曲线的有用信息。

(ii) 垂直渐近线:如果下列任一条件成立,则 x = a x = a x=a 是垂直渐近线:
lim ⁡ x → a + f ( x ) = ∞ lim ⁡ x → a − f ( x ) = ∞ \lim_{x \to a^+} f(x) = \infty \quad \lim_{x \to a^-} f(x) = \infty xa+limf(x)=xalimf(x)=
lim ⁡ x → a + f ( x ) = − ∞ lim ⁡ x → a − f ( x ) = − ∞ \lim_{x \to a^+} f(x) = -\infty \quad \lim_{x \to a^-} f(x) = -\infty xa+limf(x)=xalimf(x)=
(对于有理函数,可以通过将分母设为 0 0 0 来找到垂直渐近线。但对于其他函数,此方法不适用。)

(iii) 斜渐近线:在本节末讨论。

E. 增减区间 使用 I/D 测试。计算 f ′ ( x ) f'(x) f(x) 并找到 f ′ ( x ) f'(x) f(x) 为正(函数递增)和为负(函数递减)的区间。

F. 局部极值 找到 f ′ ( c ) = 0 f'(c) = 0 f(c)=0 f ′ ( c ) f'(c) f(c) 不存在的临界数 c c c。使用一阶导数测试判断局部极大值和极小值。如果 f ′ f' f c c c 点从正变负,则 f ( c ) f(c) f(c) 是局部极大值;如果 f ′ f' f c c c 点从负变正,则 f ( c ) f(c) f(c) 是局部极小值。也可以使用二阶导数测试,如果 f ′ ′ ( c ) > 0 f''(c) > 0 f′′(c)>0 f ( c ) f(c) f(c) 是局部极小值;如果 f ′ ′ ( c ) < 0 f''(c) < 0 f′′(c)<0 f ( c ) f(c) f(c) 是局部极大值。

G. 凹凸性和拐点 计算二阶导数 f ′ ′ ( x ) f''(x) f′′(x) 并使用凹凸性测试。拐点是凹凸性变化的点。

H. 绘制曲线 使用 A-G 中的信息绘制图形。用虚线绘制渐近线。标出截距、极值点和拐点。使曲线通过这些点,依据凹凸性和增减性变化,最终逼近渐近线。

例1 使用指南绘制曲线 y = 2 x 2 x 2 − 1 y = \frac{2x^2}{x^2 - 1} y=x212x2

A. 定义域
{ x ∣ x 2 − 1 ≠ 0 } = { x ∣ x ≠ ± 1 } = ( − ∞ , − 1 ) ∪ ( − 1 , 1 ) ∪ ( 1 , ∞ ) \{x \mid x^2 - 1 \neq 0\} = \{x \mid x \neq \pm 1\} = (-\infty, -1) \cup (-1, 1) \cup (1, \infty) {xx21=0}={xx=±1}=(,1)(1,1)(1,)

B. 截距 X X X 轴和 Y Y Y 轴的截距均为 0。

C. 对称性 由于 f ( − x ) = f ( x ) f(-x) = f(x) f(x)=f(x),函数 f f f 是偶函数。曲线关于 y y y 轴对称。

D. 渐近线
lim ⁡ x → ± ∞ 2 x 2 x 2 − 1 = lim ⁡ x → ± ∞ 2 1 − 1 x 2 = 2 \lim_{x \to \pm \infty} \frac{2x^2}{x^2 - 1} = \lim_{x \to \pm \infty} \frac{2}{1 - \frac{1}{x^2}} = 2 x±limx212x2=x±lim1x212=2
因此,直线 y = 2 y = 2 y=2 是水平渐近线。

由于当 x = ± 1 x = \pm 1 x=±1 时分母为 0 0 0,我们计算以下极限:
lim ⁡ x → 1 + 2 x 2 x 2 − 1 = ∞ lim ⁡ x → 1 − 2 x 2 x 2 − 1 = − ∞ \lim_{x \to 1^+} \frac{2x^2}{x^2 - 1} = \infty \quad \lim_{x \to 1^-} \frac{2x^2}{x^2 - 1} = -\infty x1+limx212x2=x1limx212x2=
lim ⁡ x → − 1 + 2 x 2 x 2 − 1 = − ∞ lim ⁡ x → − 1 − 2 x 2 x 2 − 1 = ∞ \lim_{x \to -1^+} \frac{2x^2}{x^2 - 1} = -\infty \quad \lim_{x \to -1^-} \frac{2x^2}{x^2 - 1} = \infty x1+limx212x2=x1limx212x2=
因此,直线 x = 1 x = 1 x=1 x = − 1 x = -1 x=1 是垂直渐近线。

E. 增减区间
f ′ ( x ) = ( x 2 − 1 ) ( 4 x ) − 2 x 2 ⋅ 2 x ( x 2 − 1 ) 2 = − 4 x ( x 2 − 1 ) 2 f'(x) = \frac{(x^2 - 1)(4x) - 2x^2 \cdot 2x}{(x^2 - 1)^2} = \frac{-4x}{(x^2 - 1)^2} f(x)=(x21)2(x21)(4x)2x22x=(x21)24x
x < 0 ( x ≠ − 1 ) x < 0 (x \neq -1) x<0(x=1) 时, f ′ ( x ) > 0 f'(x) > 0 f(x)>0,当 x > 0 ( x ≠ 1 ) x > 0 (x \neq 1) x>0(x=1) 时, f ′ ( x ) < 0 f'(x) < 0 f(x)<0。因此,函数在 ( − ∞ , − 1 ) (-\infty, -1) (,1) ( − 1 , 0 ) (-1, 0) (1,0) 上递增,在 ( 0 , 1 ) (0, 1) (0,1) ( 1 , ∞ ) (1, \infty) (1,) 上递减。

F. 局部极值 唯一的临界点是 x = 0 x = 0 x=0。由于 f ′ ( x ) f'(x) f(x) x = 0 x = 0 x=0 处从正变负,因此 f ( 0 ) = 0 f(0) = 0 f(0)=0 是局部极大值(由一阶导数测试)。

G. 凹凸性和拐点
f ′ ′ ( x ) = ( x 2 − 1 ) 2 ( − 4 ) + 4 x ⋅ 2 ( x 2 − 1 ) 2 x ( x 2 − 1 ) 4 = 12 x 2 + 4 ( x 2 − 1 ) 3 f''(x) = \frac{(x^2 - 1)^2(-4) + 4x \cdot 2(x^2 - 1)2x}{(x^2 - 1)^4} = \frac{12x^2 + 4}{(x^2 - 1)^3} f′′(x)=(x21)4(x21)2(4)+4x2(x21)2x=(x21)312x2+4
由于 12 x 2 + 4 > 0 12x^2 + 4 > 0 12x2+4>0 对于所有 x x x 成立,我们有
f ′ ′ ( x ) > 0 ⟺ x 2 − 1 > 0 ⟺ ∣ x ∣ > 1 f''(x) > 0 \Longleftrightarrow x^2 - 1 > 0 \Longleftrightarrow |x| > 1 f′′(x)>0x21>0x>1
f ′ ′ ( x ) < 0 ⟺ ∣ x ∣ < 1 f''(x) < 0 \Longleftrightarrow |x| < 1 f′′(x)<0x<1
因此,曲线在区间 ( − ∞ , − 1 ) (-\infty, -1) (,1) ( 1 , ∞ ) (1, \infty) (1,) 上向上凹,在 ( − 1 , 1 ) (-1, 1) (1,1) 上向下凹。由于 x = 1 x = 1 x=1 x = − 1 x = -1 x=1 不在函数的定义域内,因此没有拐点。

H. 绘制曲线
使用 E-G 中的信息,我们完成了绘图。
在这里插入图片描述
例2 绘制函数 f ( x ) = x 2 x + 1 f(x) = \frac{x^2}{\sqrt{x + 1}} f(x)=x+1 x2 的图像

A. 定义域
{ x ∣ x + 1 > 0 } = { x ∣ x > − 1 } = ( − 1 , ∞ ) \{x \mid x + 1 > 0\} = \{x \mid x > -1\} = (-1, \infty) {xx+1>0}={xx>1}=(1,)

B. 截距
X 轴和 Y 轴的截距均为 0。

C. 对称性
无。

D. 渐近线
lim ⁡ x → ∞ x 2 x + 1 = ∞ \lim_{x \to \infty} \frac{x^2}{\sqrt{x + 1}} = \infty xlimx+1 x2=
因此没有水平渐近线。由于 x + 1 → 0 \sqrt{x + 1} \to 0 x+1 0 x → − 1 + x \to -1^+ x1+,且 ( f(x) ) 始终为正,我们有:
lim ⁡ x → − 1 + x 2 x + 1 = ∞ \lim_{x \to -1^+} \frac{x^2}{\sqrt{x + 1}} = \infty x1+limx+1 x2=
因此,直线 x = − 1 x = -1 x=1 是垂直渐近线。

E. 增减区间
f ′ ( x ) = x + 1 ⋅ ( 2 x ) − x 2 ⋅ 1 2 x + 1 x + 1 = 3 x 2 + 4 x 2 ( x + 1 ) 3 / 2 = x ( 3 x + 4 ) 2 ( x + 1 ) 3 / 2 f'(x) = \frac{\sqrt{x + 1} \cdot (2x) - x^2 \cdot \frac{1}{2\sqrt{x + 1}}}{x + 1} = \frac{3x^2 + 4x}{2(x + 1)^{3/2}} = \frac{x(3x + 4)}{2(x + 1)^{3/2}} f(x)=x+1x+1 (2x)x22x+1 1=2(x+1)3/23x2+4x=2(x+1)3/2x(3x+4)
我们看到,当 x = 0 x = 0 x=0 f ′ ( x ) = 0 f'(x) = 0 f(x)=0(注意到 − 4 3 -\frac{4}{3} 34 不在 f f f 的定义域内),所以唯一的临界点是 0 0 0。由于 f ′ ( x ) < 0 f'(x) < 0 f(x)<0 − 1 < x < 0 -1 < x < 0 1<x<0 并且 f ′ ( x ) > 0 f'(x) > 0 f(x)>0 x > 0 x > 0 x>0,所以 f f f ( − 1 , 0 ) (-1, 0) (1,0) 上递减,在 ( 0 , ∞ ) (0, \infty) (0,) 上递增。

F. 局部极值
由于 f ′ ( 0 ) = 0 f'(0) = 0 f(0)=0 并且 f ′ f' f 0 0 0 处从负变正,因此 f ( 0 ) = 0 f(0) = 0 f(0)=0 是一个局部(也是绝对)极小值(由一阶导数测试)。

G. 凹凸性和拐点
f ′ ′ ( x ) = 2 ( x + 1 ) 3 / 2 ( 6 x + 4 ) − ( 3 x 2 + 4 x ) 3 ( x + 1 ) 1 / 2 4 ( x + 1 ) 3 = 3 x 2 + 8 x + 8 4 ( x + 1 ) 5 / 2 f''(x) = \frac{2(x + 1)^{3/2}(6x + 4) - (3x^2 + 4x)3(x + 1)^{1/2}}{4(x + 1)^3} = \frac{3x^2 + 8x + 8}{4(x + 1)^{5/2}} f′′(x)=4(x+1)32(x+1)3/2(6x+4)(3x2+4x)3(x+1)1/2=4(x+1)5/23x2+8x+8
注意分母始终为正。分子是二次函数 3 x 2 + 8 x + 8 3x^2 + 8x + 8 3x2+8x+8,其判别式 b 2 − 4 a c = − 32 b^2 - 4ac = -32 b24ac=32,为负,且 x 2 x^2 x2 的系数为正。因此 f ′ ′ ( x ) > 0 f''(x) > 0 f′′(x)>0 对于定义域内的所有 x x x 都成立,这意味着函数在 ( − 1 , ∞ ) (-1, \infty) (1,) 上是向上凹的,没有拐点。

H. 绘制曲线
根据 E-G 中的信息,我们完成了绘图。
在这里插入图片描述
例3 绘制函数 f ( x ) = cos ⁡ x 2 + sin ⁡ x f(x) = \frac{\cos x}{2 + \sin x} f(x)=2+sinxcosx 的图像

A. 定义域
定义域是 R \mathbb{R} R

B. 截距

  • Y 轴截距是 f ( 0 ) = 1 2 f(0) = \frac{1}{2} f(0)=21
  • X 轴截距在 cos ⁡ x = 0 \cos x = 0 cosx=0 时出现,即 x = ( π 2 ) + n π x = \left(\frac{\pi}{2}\right) + n\pi x=(2π)+,其中 n n n 为整数。

C. 对称性
函数 f f f 既不是偶函数也不是奇函数,但 f ( x + 2 π ) = f ( x ) f(x + 2\pi) = f(x) f(x+2π)=f(x) 对于所有 x x x 成立,因此 f f f 是周期函数,周期为 2 π 2\pi 2π。因此,只需要考虑 0 ≤ x ≤ 2 π 0 \leq x \leq 2\pi 0x2π,然后在 H H H 部分通过平移来扩展曲线。

D. 渐近线
无。

E. 增减区间
f ′ ( x ) = ( 2 + sin ⁡ x ) ( − sin ⁡ x ) − cos ⁡ x ( cos ⁡ x ) ( 2 + sin ⁡ x ) 2 = − 2 sin ⁡ x − 1 ( 2 + sin ⁡ x ) 2 f'(x) = \frac{(2 + \sin x)(-\sin x) - \cos x (\cos x)}{(2 + \sin x)^2} = \frac{-2 \sin x - 1}{(2 + \sin x)^2} f(x)=(2+sinx)2(2+sinx)(sinx)cosx(cosx)=(2+sinx)22sinx1
分母总是正的,因此 f ′ ( x ) > 0 f'(x) > 0 f(x)>0 2 sin ⁡ x + 1 < 0 2 \sin x + 1 < 0 2sinx+1<0 sin ⁡ x < − 1 2 \sin x < -\frac{1}{2} sinx<21,即 7 π 6 < x < 11 π 6 \frac{7\pi}{6} < x < \frac{11\pi}{6} 67π<x<611π。因此,函数在 ( 7 π 6 , 11 π 6 ) \left(\frac{7\pi}{6}, \frac{11\pi}{6}\right) (67π,611π) 上递增,在 ( 0 , 7 π 6 ) (0, \frac{7\pi}{6}) (0,67π) ( 11 π 6 , 2 π ) \left(\frac{11\pi}{6}, 2\pi\right) (611π,2π) 上递减。

F. 局部极值
根据 E E E 部分和一阶导数测试,局部极小值 f ( 7 π 6 ) = − 1 3 f \left( \frac{7\pi}{6} \right) = -\frac{1}{\sqrt{3}} f(67π)=3 1 和局部极大值 f ( 11 π 6 ) = 1 3 f \left( \frac{11\pi}{6} \right) = \frac{1}{\sqrt{3}} f(611π)=3 1

G. 凹凸性和拐点
f ′ ′ ( x ) = − 2 cos ⁡ x ( 1 − sin ⁡ x ) ( 2 + sin ⁡ x ) 3 f''(x) = \frac{-2 \cos x (1 - \sin x)}{(2 + \sin x)^3} f′′(x)=(2+sinx)32cosx(1sinx)
由于 ( 2 + sin ⁡ x ) 3 > 0 (2 + \sin x)^3 > 0 (2+sinx)3>0 并且 1 − sin ⁡ x ≥ 0 1 - \sin x \geq 0 1sinx0 对所有 x x x 成立,我们知道 f ′ ′ ( x ) > 0 f''(x) > 0 f′′(x)>0 cos ⁡ x < 0 \cos x < 0 cosx<0,即 π 2 < x < 3 π 2 \frac{\pi}{2} < x < \frac{3\pi}{2} 2π<x<23π。因此,函数在 ( π 2 , 3 π 2 ) \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) (2π,23π) 上凹向上。在 ( 0 , π 2 ) (0, \frac{\pi}{2}) (0,2π) ( 3 π 2 , 2 π ) \left(\frac{3\pi}{2}, 2\pi\right) (23π,2π) 上凹向下。拐点在 ( π 2 , 0 ) \left(\frac{\pi}{2}, 0\right) (2π,0) ( 3 π 2 , 0 ) \left(\frac{3\pi}{2}, 0\right) (23π,0)

H. 绘制曲线
函数的图像限制在 0 ≤ x ≤ 2 π 0 \leq x \leq 2\pi 0x2π 如图所示。然后我们通过平移扩展曲线,完成完整图像。
在这里插入图片描述
在这里插入图片描述

斜渐近线

某些曲线具有斜渐近线,即既非水平也非垂直的渐近线。如果

lim ⁡ x → ∞ [ f ( x ) − ( m x + b ) ] = 0 \lim_{x \to \infty} [f(x) - (mx + b)] = 0 xlim[f(x)(mx+b)]=0

其中 m ≠ 0 m \neq 0 m=0,那么直线 y = m x + b y = mx + b y=mx+b 被称为斜渐近线,因为曲线 y = f ( x ) y = f(x) y=f(x) 和直线 y = m x + b y = mx + b y=mx+b 之间的垂直距离趋近于 0 0 0,如图所示。如果令 x → − ∞ x \to -\infty x,情况类似。)
在这里插入图片描述
例4 绘制函数 f ( x ) = x 3 x 2 + 1 f(x) = \frac{x^3}{x^2 + 1} f(x)=x2+1x3 的图像

A. 定义域
定义域是 R \mathbb{R} R

B. 截距
X X X 轴和 Y Y Y 轴的截距均为 0 0 0

C. 对称性
由于 f ( − x ) = − f ( x ) f(-x) = -f(x) f(x)=f(x),函数 f f f 是奇函数,其图像关于原点对称。

D. 渐近线
由于 x 2 + 1 x^2 + 1 x2+1 永远不为 0 0 0,因此没有垂直渐近线。因为 f ( x ) → ∞ f(x) \to \infty f(x) x → ∞ x \to \infty x f ( x ) → − ∞ f(x) \to -\infty f(x) x → − ∞ x \to -\infty x,所以没有水平渐近线。但通过长除法,我们可以找到斜渐近线:
f ( x ) = x 3 x 2 + 1 = x − x x 2 + 1 f(x) = \frac{x^3}{x^2 + 1} = x - \frac{x}{x^2 + 1} f(x)=x2+1x3=xx2+1x
该方程表明 ( y = x ) 是斜渐近线的候选者。实际上,
f ( x ) − x = − x x 2 + 1 = − 1 x + 1 x → 0 当 x → ± ∞ f(x) - x = -\frac{x}{x^2 + 1} = -\frac{1}{x + \frac{1}{x}} \to 0 \quad \text{当} \quad x \to \pm \infty f(x)x=x2+1x=x+x110x±
因此,直线 y = x y = x y=x 是斜渐近线。

E. 增减区间
f ′ ( x ) = ( x 2 + 1 ) ( 3 x 2 ) − x 3 ⋅ 2 x ( x 2 + 1 ) 2 = x 2 ( x 2 + 3 ) ( x 2 + 1 ) 2 f'(x) = \frac{(x^2 + 1)(3x^2) - x^3 \cdot 2x}{(x^2 + 1)^2} = \frac{x^2(x^2 + 3)}{(x^2 + 1)^2} f(x)=(x2+1)2(x2+1)(3x2)x32x=(x2+1)2x2(x2+3)
由于 f ′ ( x ) > 0 f'(x) > 0 f(x)>0 对于所有 x x x(除 x = 0 x = 0 x=0 外),函数在 ( − ∞ , ∞ ) (-\infty, \infty) (,) 上递增。

F. 局部极值
虽然 f ′ ( 0 ) = 0 f'(0) = 0 f(0)=0,但 f ′ f' f 0 0 0 处没有变化符号,因此没有局部极大值或极小值。

G. 凹凸性和拐点
f ′ ′ ( x ) = ( x 2 + 1 ) 2 ( 4 x 3 + 6 x ) − ( x 4 + 3 x 2 ) ⋅ 2 ( x 2 + 1 ) 2 x ( x 2 + 1 ) 4 = 2 x ( 3 − x 2 ) ( x 2 + 1 ) 3 f''(x) = \frac{(x^2 + 1)^2(4x^3 + 6x) - (x^4 + 3x^2) \cdot 2(x^2 + 1)2x}{(x^2 + 1)^4} = \frac{2x(3 - x^2)}{(x^2 + 1)^3} f′′(x)=(x2+1)4(x2+1)2(4x3+6x)(x4+3x2)2(x2+1)2x=(x2+1)32x(3x2)
由于 f ′ ′ ( x ) = 0 f''(x) = 0 f′′(x)=0 x = 0 x = 0 x=0 x = ± 3 x = \pm \sqrt{3} x=±3 ,我们建立以下表格:

区间 x x x 3 − x 2 3 - x^2 3x2 x 2 + 1 x^2 + 1 x2+1 f ′ ′ ( x ) f''(x) f′′(x) f f f
x < − 3 x < -\sqrt{3} x<3 --++向上凹 (CU)
− 3 < x < 0 -\sqrt{3} < x < 0 3 <x<0-++-向下凹 (CD)
0 < x < 3 0 < x < \sqrt{3} 0<x<3 ++++向上凹 (CU)
x > 3 x > \sqrt{3} x>3 +-+-向下凹 (CD)

拐点为 ( − 3 , − 3 4 3 ) (-\sqrt{3}, -\frac{3}{4}\sqrt{3}) (3 ,433 ) ( 0 , 0 ) (0, 0) (0,0) ( 3 , 3 4 3 ) (\sqrt{3}, \frac{3}{4}\sqrt{3}) (3 ,433 )

H. 绘制曲线
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值