微分几何学习(二)(曲线论,弧微分)

上一节学到了向量函数,其实不难发现我们接触向量函数肯定比知道这个向量函数的概念要早。通过上一章了解了向量函数的求微和求积,以后也不会考虑很多的,直接对单个求就行了。因为向量函数求微/积就是每个组成向量的成分单独求解。而且最后还有一些重要的概念,需要牢记,会使用。比如何时向量函数为常数,何时向量函数方向不变,何时与某个固定方向垂直。

1.参数曲线

E3空间的一条曲线可以表示为从区间[a,b]到E3空间的一个连续映射    p:[a,b]→E3  (解释一下映射,映射其实可以看做函数对应关系,也就是f[a,b]=E3(内部的一条曲线),更范范地说就是通过映射运算,可以拿[a,b]求出E3空间的一条曲线)。该映射称为参数曲线。|
曲线上的点p(t)(a≤t≤b)与向径等同,设r(t)=,则

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值