1 Polar 码编码
1.1 信道极化
1.2 编码
1.3 相关例子
1.3.1BEC信道
1.3.2信道联合极化编码思想
2 SC译码算法
2.1 SC译码算法
2.2 LLR,f函数和g函数
3 言外之笔
1 Polar 码编码
1.1信道极化
2009年在“IEEETransaction on Information Theory”期刊上发表论文详细地阐述了信道极化,并基于信道极化给出了一种新的编码方式,名称为极化码。从代数编码的角度来说,只要给定编码长度,极化码的编译码结构就唯一确定了;从概率编码的角度来说,极化码在设计时,利用了信道联合与信道分裂的过程来选择具体的编码方案,而且在译码时也是采用概率算法。
信道极化是一种现象,把它看作一种原理,而极化码编码则是对这一原理的应用。从宏观的角度观察,信道联合是把信道极化过程看作一个整体,输入是比特,输出也是比特。但只有信道联合是不够的,无法确知各个子信道的输入和输出是什么关系。于是就需要对信道极化过程有一个微观的表达,这个微观表达是通过信道分裂过程来实现的。宏观和微观合在一起就构成了对信道极化过程的完整表达。在实际中,可以采用递归式来计算各个分裂子信道的转移概率。
通过信道的联合与分裂,各个子信道的对称容量将呈现两级分化的趋势,随着码长的增加,一部分子信道的容量趋于1,而其余子信道的容量趋于0。极化码正是利用这一信道极化的现象,在容量趋于1的个子信道上传输消息比特,在其余子信道上传输冻结比特。
在极化码编码时,首先要区分出分裂信道的可靠程度,可靠度高的信道传输信息比特,可靠度低的传输“冻结比特”,而对各个极化信道的可靠性进行度量常用的有三种方法:巴氏参数法、密度进化法和高斯近似法。
具体表格如下:

图1 信道估计方法
2016年,华为提出了一种β-expansion算法,并且证实β-expansion方法以低复杂度获得了与GA相同的性能,提供了一种整洁、复杂度低的方法来排序信道的可靠度。
1.2 编码
总体而言,极化编码的步骤主要由以下三部分构成:极化信道可靠性估计、比特混合以及构造生成矩阵。
不同的信道,信道估计的方法也不太相同,如图1所示;比特混合,简而言之,对于码率为K/N的极化码,选择可靠性最大的K个分裂子信道传输消息比特,其他分裂子信道传输冻结比特,冻结比特一般为“0”。
生成矩阵可表示为:
或者
其中