摄像头标定方法分类

一、概述
计算机视觉的基本任务之一是从摄像机获取的图像信息出发计算三维空间中物体的几何信息,并由此重建和识别物体,而空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系是由摄像机成像的几何模型决定的,这些几何模型参数就是摄像机参数。在大多数条件下,这些参数必须通过实验与计算才能得到,这个过程被称为摄像机定标(或称为标定)。标定过程就是确定摄像机的几何和光学参数,摄像机相对于世界坐标系的方位。标定精度的大小,直接影响着计算机视觉(机器视觉)的精度。迄今为止,对于摄像机标定问题已提出了很多方法,摄像机标定的理论问题已得到较好的解决,对摄像机标定的研究来说,当前的研究工作应该集中在如何针对具体的实际应用问题,采用特定的简便、实用、快速、准确的标定方法。

二、 摄像机标定分类

1 根据是否需要标定参照物来看,可分为传统的摄像机标定方法和摄像机自标定方法。

2 从所用模型不同来分有线性和非线性。
所谓摄像机的线性模型,是指经典的小孔模型。成像过程不服从小孔模型的称为摄像机的非线性模型。线性模型摄像机标定,用线性方程求解,简单快速,已成为计算机视觉领域的研究热点之一,目前已有大量研究成果。但线性模型不考虑镜头畸变,准确性欠佳;对于非线性模型摄像机标定,考虑了畸变参数,引入了非线性优化,但方法较繁,速度慢,对初值选择和噪声比较敏感,而且非线性搜索并不能保证参数收敛到全局最优解。
3 从视觉系统所用的摄像机个数不同分为单摄像机和多摄像机
在双目立体视觉中,还要确定两个摄像机之间的相对位置和方向。
4 从求解参数的结果来分有显式和隐式。
隐参数定标是以一个转换矩阵表示空间物点与二维像点的对应关系,并以转换矩阵元素作为定标参数,由于这些参数没有具体的物理意义,所以称为隐参数定标。在精度要求不高的情
况下,因为只需要求解线性方程,此可以获得较高的效率。比较典型的是直接线性定标(DLT)
DLT 定标以最基本的针孔成像模型为研究对象,忽略具体的中间成像过程,用一个3×4阶矩阵表示空间物点与二维像点的直接对应关系。为了提高定标精度,就需要通过精确分析摄像机成像的中间过程,构造精密的几何模型,设置具有物理意义的参数(一般包括镜头畸变参数、图像中心偏差、帧存扫描水平比例因子和有效焦距偏差),然后确定这些未知参数,实现摄像机的显参数定标。


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值