实变函数精解【3】

点集

求导集

  • 例1
    E = { 1 / n + 1 / m : n , m ∈ N } 1. lim ⁡ n → ∞ ( 1 / n + 1 / m ) = 1 / m 2. lim ⁡ n , m → ∞ ( 1 / n + 1 / m ) = 0 3. E ′ = { 0 , 1 , 1 / 2 , 1 / 3 , . . . . } E=\{1/n+1/m:n,m \in N\} \\1.\lim_{n \rightarrow \infty}(1/n+1/m)=1/m \\2.\lim_{n,m \rightarrow \infty}(1/n+1/m)=0 \\3.E'=\{0,1,1/2,1/3,....\} E={1/n+1/m:n,mN}1.nlim(1/n+1/m)=1/m2.n,mlim(1/n+1/m)=03.E={0,1,1/2,1/3,....}
  • 例2
    E = { ( m − n ) / ( m + n ) : m , n ∈ N } 1. ( m − n ) / ( m + n ) = 1 − 2 m n + 1 2. lim ⁡ n → ∞ ( 1 − 2 m n + 1 ) = − 1 3. lim ⁡ m → ∞ ( 1 − 2 m n + 1 ) = 1 4. lim ⁡ n , m → ∞ ( 1 − 2 m n + 1 ) = lim ⁡ n , m → ∞ ( 1 − 2 1 m n + 1 ) 1 m n + 1 < 1 = > − 1 < lim ⁡ n , m → ∞ ( 1 − 2 1 m n + 1 ) < 1 E ′ = [ − 1 , 1 ] E=\{(\sqrt m-\sqrt n)/(\sqrt m +\sqrt n):m,n \in N\} \\1.(\sqrt m-\sqrt n)/(\sqrt m +\sqrt n)=1-\frac {2} {\sqrt {m \over n}+1} \\2.\lim_{n \rightarrow \infty }(1-\frac {2} {\sqrt {m \over n}+1})=-1 \\3.\lim_{m \rightarrow \infty }(1-\frac {2} {\sqrt {m \over n}+1})=1 \\4.\lim_{n,m \rightarrow \infty }(1-\frac {2} {\sqrt {m \over n}+1})=\lim_{n,m \rightarrow \infty }(1- 2 \frac {1} {\sqrt {m \over n}+1}) \\\frac {1} {\sqrt {m \over n}+1} < 1=> \\-1 <\lim_{n,m \rightarrow \infty }(1- 2 \frac {1} {\sqrt {m \over n}+1})<1 \\E'=[-1,1] E={(m n )/(m +n ):m,nN}1.(m n )/(m +n )=1nm +122.nlim(1nm +12)=13.mlim(1nm +12)=14.n,mlim(1nm +12)=n,mlim(12nm +11)nm +11<1=>1<n,mlim(12nm +11)<1E=[1,1]
  • 例3
    E = { x n = s i n l n n : n ∈ N } E=\{x_n=sinlnn:n \in N\} E={xn=sinlnn:nN}

lim ⁡ n → ∞ l n n = ∞ − 1 ≤ lim ⁡ n → ∞ s i n l n n ≤ 1 E ′ = [ − 1 , 1 ] \lim_{n \rightarrow \infty}lnn=\infty \\-1\le \lim_{n \rightarrow \infty}sinlnn \le1 \\E'=[-1,1] nlimlnn=1nlimsinlnn1E=[1,1]

闭集

概述

E ⊂ R n , E ⊃ E ′ = > E 为闭集 E \subset R^n,E \supset E'=>E为闭集 ERn,EE=>E为闭集
E ˉ = E ∪ E ′ = > E 为闭包 \bar E=E \cup E'=>E为闭包 Eˉ=EE=>E为闭包
A ⊂ B , A ˉ = B = > A 在 B 中稠密 , A 是 B 的稠密子集 A \subset B,\bar A=B=>A在B中稠密,A是B的稠密子集 AB,Aˉ=B=>AB中稠密,AB的稠密子集
下面内容由文心一言生成

在实变函数中,闭集是一个重要的概念,它与开集相对。以下是对实变函数中闭集的详细解释:

  1. 定义

    • 在实数集R(或更一般的度量空间、拓扑空间)中,闭集是指包含其所有极限点的集合。
    • 换句话说,如果一个集合的所有极限点都属于该集合本身,则它是闭集。
  2. 性质

    • 闭集在并集、交集和补集运算下具有良好的性质。
    • 任意多个闭集的交集仍然是闭集。
    • 有限个闭集的并集也是闭集。
    • 闭集的补集是开集(在实数集R中)。
  3. 例子

    • 在实数集R中,闭区间[a, b]是一个闭集,因为它包含了其所有边界点a和b,以及区间内的所有点。
    • 单点集{x}也是一个闭集,因为它只包含一个点,该点自然是它自己的极限点。
    • 空集∅也是一个闭集,因为它不包含任何点,所以也没有极限点需要包含。
  4. 与开集的关系

    • 开集和闭集是相对的。一个集合是开集当且仅当它的补集是闭集。
    • 在实数集R中,开区间(a, b)是一个开集,而它的补集是闭集,由两个闭区间和两个单点集组成:(-∞, a] ∪ [b, +∞) ∪ {a} ∪ {b}(但通常我们只说它的补集包含(-∞, a]和[b, +∞)这两部分,因为单点集在实数轴上可视为闭集)。
  5. 闭包与闭集的关系

    • 任何一个集合S的闭包都是闭集。
    • 闭包是包含S的最小闭集,即S的闭包是包含S的所有闭集中的最小者(在包含关系下)。

综上所述,闭集是实变函数中一个基本而重要的概念,它与开集、闭包等概念紧密相关,并在数学分析中发挥着重要作用。

在点集拓扑学中,对于实数集R(或更一般的度量空间、拓扑空间)中的一个点集E,E的闭包通常定义为E与E的所有极限点(或聚点)的并集,记作Ē或E∪E′。这里,E′表示E的导集,即E中所有聚点的集合。聚点的定义是:对于E中的点x,如果存在一个包含x的邻域U,使得U与E的交集(去掉x后)非空,则称x为E的聚点。

性质:闭包是包含原集合的最小闭集。即,对于任意集合E,其闭包Ē是包含E的所有闭集中最小的一个。
例子:考虑实数集R上的开区间(0,1),其闭包是闭区间[0,1],因为0和1是(0,1)的聚点。

难点及例子

  • E = { c o s n } E=\{cosn\} E={cosn},则 E ˉ = [ − 1 , 1 ] \bar E=[-1,1] Eˉ=[1,1]
    1. B = { n + 2 k π ∣ n , m ∈ Z } , ∀ a ∈ B , ∃ b ∈ B , δ > 0 = > ∣ a − b ∣ < δ = > B ˉ = R 2. E c = { c i ∣ c i = c o s ( a ) , ∀ a ∈ B } E d = { d i ∣ d i = c o s ( b ) , ∀ b ∈ B } ∀ c k ∈ E c , ∃ d ∈ E d = > lim ⁡ k → ∞ ( c k − d ) = 0 3. E c = E d = [ − 1 , 1 ] , E ˉ = [ − 1 , 1 ] 1.B=\{n+2k\pi| n,m\in Z\},\forall a \in B,\exists b \in B, \delta>0=>|a-b| < \delta=>\bar B=R \\2.E_c=\{c_i|c_i=cos(a),\forall a \in B\} \\E_d=\{d_i|d_i=cos(b),\forall b \in B\} \\\forall c_k \in E_c,\exists d \in E_d=>\lim_{k \rightarrow \infty}(c_k-d)=0 \\3.E_c=E_d=[-1,1],\bar E=[-1,1] 1.B={n+2n,mZ},aBbB,δ>0=>ab<δ=>Bˉ=R2.Ec={cici=cos(a),aB}Ed={didi=cos(b),bB}ckEc,dEd=>klim(ckd)=03.Ec=Ed=[1,1],Eˉ[1,1]

收敛问题

下面取自文心一言的生成内容
在实变函数论中,收敛的概念比微积分中的收敛更为广泛和复杂。它通常涉及测度空间上的函数序列或函数列的收敛性。这里,我们主要讨论几种常见的收敛类型:逐点收敛、一致收敛、几乎处处收敛以及依测度收敛。

1. 逐点收敛(Pointwise Convergence)

{ f n } \{f_n\} {fn} 是定义在集合 E E E 上的函数序列, f f f 是定义在 E E E 上的函数。如果对 E E E 中的每一个点 x x x,都有 lim ⁡ n → ∞ f n ( x ) = f ( x ) \lim_{n \to \infty} f_n(x) = f(x) limnfn(x)=f(x),则称 { f n } \{f_n\} {fn} E E E 上逐点收敛于 $ f $。

2. 一致收敛(Uniform Convergence)

{ f n } \{f_n\} {fn} 是定义在集合 E E E 上的函数序列, f f f 是定义在 E E E 上的函数。如果对任意给定的 ε > 0 \varepsilon > 0 ε>0,都存在一个正整数 N N N,使得当 n > N n > N n>N 时,对所有的 x ∈ E x \in E xE,都有 ∣ f n ( x ) − f ( x ) ∣ < ε |f_n(x) - f(x)| < \varepsilon fn(x)f(x)<ε,则称 { f n } \{f_n\} {fn} E E E 上一致收敛于 f f f

3. 几乎处处收敛(Almost Everywhere Convergence)

{ f n } \{f_n\} {fn} 是定义在可测集 E E E 上的函数序列, f f f 是定义在 E E E 上的函数。如果存在一个可测集 E 0 ⊂ E E_0 \subset E E0E,使得 m ( E 0 ) = 0 m(E_0) = 0 m(E0)=0 m m m E E E 上的测度),且对 E − E 0 E - E_0 EE0 中的每一个点 x x x,都有 lim ⁡ n → ∞ f n ( x ) = f ( x ) \lim_{{n \to \infty}} f_n(x) = f(x) limnfn(x)=f(x),则称 { f n } \{f_n\} {fn} E E E 上几乎处处收敛于 f f f

4. 依测度收敛(Convergence in Measure)

{ f n } \{f_n\} {fn} 是定义在可测集 E E E 上的函数序列, f f f 是定义在 E E E 上的函数。如果对任意给定的 ε > 0 \varepsilon > 0 ε>0,都有 lim ⁡ n → ∞ m { x ∈ E : ∣ f n ( x ) − f ( x ) ∣ ≥ ε } = 0 \lim_{{n \to \infty}} m\{x \in E: |f_n(x) - f(x)| \geq \varepsilon\} = 0 limnm{xE:fn(x)f(x)ε}=0,则称 { f n } \{f_n\} {fn} E E E 上依测度收敛于 f f f

收敛之间的关系

  • 一致收敛蕴含逐点收敛和几乎处处收敛。
  • 几乎处处收敛不一定蕴含一致收敛,但几乎处处收敛和逐点收敛在可测集上对于连续函数是等价的(如果极限函数是连续的)。
  • 依测度收敛不一定蕴含逐点收敛或几乎处处收敛,但它是比逐点收敛和几乎处处收敛更弱的收敛性。

例子

考虑在区间 [ 0 , 1 ] [0, 1] [0,1] 上的函数序列 f n ( x ) = x n f_n(x) = x^n fn(x)=xn。这个序列在 [ 0 , 1 ) [0, 1) [0,1) 上逐点收敛于函数 f ( x ) = 0 f(x) = 0 f(x)=0,但在 x = 1 x = 1 x=1 处不收敛。因此,它在 [ 0 , 1 ] [0, 1] [0,1] 上不是一致收敛的,但它是几乎处处收敛的(因为不收敛的点只有一个,即 x = 1 x = 1 x=1,这是一个零测集)。此外,这个序列也不是依测度收敛到 f ( x ) = 1 f(x) = 1 f(x)=1(在 x = 1 x = 1 x=1 处)的,因为对于任意 ε < 1 \varepsilon < 1 ε<1,集合 { x ∈ [ 0 , 1 ] : ∣ x n − 1 ∣ \{x \in [0, 1]:|x^n-1| {x[0,1]:xn1∣>= ε \varepsilon ε测度总是大于 0(当 n n n 足够大时,这个集合至少包含 [ 1 − ε n , 1 ] [1 - \varepsilon^n, 1] [1εn,1])。

参考文献

1.《实变函数解题指南》 周民强
2.《实变函数论》 周民强

  • 21
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值