实变函数精解【1】

集合与点集

基础

  • 设A和B是全集X的子集。 ∀ E ⊂ X , E ∩ A = E ∪ B ,则 A = X , B = ∅ \forall E \subset X,E \cap A=E \cup B,则A=X,B=\emptyset EXEA=EB,则A=X,B=
    证:设 E = X = > X ∩ A = X ∪ B = > A = X 设 E = A C = > ∅ = A C ∩ A = A C ∪ B = > B = ∅ \\证:设E=X=>X\cap A=X\cup B=>A=X \\设E=A^C=>\emptyset=A^C\cap A=A^C\cup B=>B=\emptyset 证:设E=X=>XA=XB=>A=XE=AC=>=ACA=ACB=>B=
  • 集合A,B,E,F
    如果 A ∪ B = F ∪ E , 且 A ∩ F = ∅ , B ∩ E = ∅ 则 A = E ,且 B = F 证: A ∩ F = ∅ , A ∪ B = F ∪ E = > A ⊂ E , E ⊂ A = > A = E B ∩ E = ∅ , A ∪ B = F ∪ E = > B ⊂ F , F ⊂ B = > B = F 如果A \cup B= F \cup E,且A \cap F= \emptyset,B \cap E=\emptyset\\则A=E,且B=F \\证:A\cap F=\emptyset,A \cup B= F \cup E \\=>A \subset E,E \subset A=>A=E\\ B \cap E=\emptyset,A \cup B= F \cup E\\=>B \subset F,F \subset B=>B=F 如果AB=FE,AF=,BE=A=E,且B=F证:AF=,AB=FE=>AE,EA=>A=EBE=,AB=FE=>BF,FB=>B=F
  • 设 A , B 是两个集合,或存在集合 E , 使得集合 A ∪ E = B ∪ E 以及 A ∩ E = B ∩ E ,则 A = B 设A,B是两个集合,或存在集合E,使得集合A\cup E=B \cup E以及A \cap E= B\cap E,则A=B A,B是两个集合,或存在集合E,使得集合AE=BE以及AE=BE,则A=B
    证: A ∪ E = ( A ∩ E ) ∪ ( A ∩ E C ) = B ∪ E = ( B ∩ E ) ∪ ( B ∩ E C ) ( A ∩ E ) ∪ ( A ∩ E C ) = ( B ∩ E ) ∪ ( B ∩ E C ) = > A = B 证:A \cup E=(A\cap E)\cup (A \cap E^C) \\=B \cup E=(B\cap E)\cup (B \cap E^C) \\(A\cap E)\cup (A \cap E^C)=(B\cap E)\cup (B \cap E^C)=>A=B 证:AE=(AE)(AEC)=BE=(BE)(BEC)(AE)(AEC)=(BE)(BEC)=>A=B
  • 求集合列的上、下限集
    E 3 n − 2 = A , E 3 n − 1 = B , E 3 n = C = > lim ⁡ n → ∞ ‾ E n = A ∪ B ∪ C = > lim ⁡ n → ∞ ‾ E n = A ∩ B ∩ C E_{3n-2}=A,E_{3n-1}=B,E_{3n}=C \\=>\overline{\lim_{n\to \infty}}E_n=A \cup B \cup C \\=>{\lim_{\overline {n\to \infty}}}E_n=A \cap B \cap C E3n2=A,E3n1=B,E3n=C=>nlimEn=ABC=>nlimEn=ABC
  • 上、下限集
    A n 是一个集合列 lim ⁡ n → ∞ ‾ A n = lim ⁡ k → ∞ ‾ A k = ∩ n = 1 ∞ ∪ k = n ∞ A k lim ⁡ n → ∞ ‾ A n = lim ⁡ k → ∞ ‾ A k = ∪ n = 1 ∞ ∩ k = n ∞ A k {A_n}是一个集合列 \\\overline{\lim_{n \to \infty}}A_n=\overline{\lim_{k \to \infty}}A_k=\cap_{n=1}^{\infty}\cup_{k=n}^{\infty}A_k \\{\lim_{\overline {n\to \infty}}}A_n={\lim_{\overline {k\to \infty}}}A_k=\cup_{n=1}^{\infty}\cap_{k=n}^{\infty}A_k An是一个集合列nlimAn=klimAk=n=1k=nAknlimAn=klimAk=n=1k=nAk

综合例子

f n ( x ) ( n ∈ N ) , f ( x ) 为定义在 R 上的实值函数,有 f n ( x ) → f ( x ) ( n → ∞ , x ∈ R ) 证 { x ∈ R : f ( x ) ≤ t } = ∩ k = 1 ∞ ∪ m = 1 ∞ ∩ n = m ∞ { x ∈ R : f n ( x ) < t + 1 / k } ( t ∈ R ) 证: 1. 设 A k = { x ∈ R : f ( x ) < t + 1 / k } k → ∞ = > { t + 1 / k } → { t } = > A k − > { x ∈ R : f ( x ) ≤ t } = > A k 是递减集合列 ( 降列 ) = > lim ⁡ k → ∞ A k = ∩ k = 1 ∞ A k = { x ∈ R : f ( x ) ≤ t } 2. 设 E n , k = { x ∈ R : f n ( x ) < t + 1 / k } n → ∞ , f n ( x ) → f ( x ) = > E n , k → { x ∈ R : f ( x ) < t + 1 / k } ∪ n = 1 ∞ ∩ n = m ∞ { x ∈ R : f n ( x ) < t + 1 / k } = lim ⁡ n → ∞ ‾ E n , k = { x ∈ R : f ( x ) < t + 1 / k } = A k f_n(x)(n\in N),f(x)为定义在R上的实值函数,有 \\f_n(x)\rightarrow f(x)(n \to \infty,x \in R) \\证\{x\in R:f(x) \le t\}=\cap_{k=1}^{\infty}\cup_{m=1}^{\infty}\cap_{n=m}^{\infty}\{x \in R:f_n(x)< t+1/k\}(t \in R) \\ \\证: \\1.设A_k=\{x \in R:f(x)< t+1/k\} \\k \to \infty=> \{t+1/k\} \rightarrow \{t\}=>A_k->\{x \in R:f(x) \le t\} \\=>A_k是递减集合列(降列) \\=>\lim_{k \to \infty}A_k=\cap_{k =1}^{\infty}A_k=\{x \in R:f(x) \le t\} \\2.设E_{n,k}=\{x \in R:f_n(x)< t+1/k\} \\n \to \infty,f_n(x) \to f(x)=>E_{n,k} \rightarrow \{x \in R:f(x) < t+1/k\} \\\cup_{n=1}^{\infty}\cap_{n=m}^{\infty}\{x \in R:f_n(x)< t+1/k\}={\lim_{\overline {n\to \infty}}}E_{n,k}\\=\{x \in R:f(x) < t+1/k\}=A_k fn(x)(nN),f(x)为定义在R上的实值函数,有fn(x)f(x)(n,xR){xR:f(x)t}=k=1m=1n=m{xR:fn(x)<t+1/k}(tR)证:1.Ak={xR:f(x)<t+1/k}k=>{t+1/k}{t}=>Ak>{xR:f(x)t}=>Ak是递减集合列(降列)=>klimAk=k=1Ak={xR:f(x)t}2.En,k={xR:fn(x)<t+1/k}n,fn(x)f(x)=>En,k{xR:f(x)<t+1/k}n=1n=m{xR:fn(x)<t+1/k}=nlimEn,k={xR:f(x)<t+1/k}=Ak

集合映射

概述

注意这里的映射有单射、满射和普通映射
1、单射:f:A->B,集合A的每个元素都能映射到B中的不同元素: ∀ x , y ∈ A , x ≠ y = > f ( x ) ≠ f ( y ) \forall x,y \in A,x \ne y=>f(x) \ne f(y) x,yA,x=y=>f(x)=f(y)
2、满射:设A和B是两个集合,如果从A到B的对应f:A→B是映射,并且集合B中的每一个元素在集合A中都有原象,那么映射,就叫做从A到B的满射.满射也称到上映射,对于 ∀ y ∈ B = > f ( x ) = y , x ∈ A \forall y \in B=>f(x)=y,x \in A yB=>f(x)=y,xA
3、普通映射:
(1) ∀ x ∈ A , 在 B 上找到唯一的 y ∈ B 与之对应。 \forall x \in A,在B上找到唯一的y \in B与之对应。 xA,B上找到唯一的yB与之对应。
(2)B中可能有些元素在A中无映射。
(3)A中不同元素可能映射到B中同一个元素。

X是无限集, f : X → X f:X \rightarrow X f:XX,=>存在 E ⊂ X 且有 E ≠ ∅ , E ≠ X , 使得 f ( E ) ⊂ E E \subset X 且有E \ne \emptyset ,E \ne X,使得f(E) \subset E EX且有E=,E=X,使得f(E)E
证:设 ∀ a ∈ X ,会存在 a , f ( a ) , f ( f ( a ) ) , . . . 记 f ( f ( a ) ) = f 2 ( a ) { a , f ( a ) , f 2 ( a )   . . . . , f n ( a ) , . . . } 构成子集 E 对于每个 a , f i ( a ) ≠ a = > E ≠ X , E ≠ ∅ 存在某个 a , f i ( a ) = a = > E ≠ X , E ≠ ∅ 证:设\forall a \in X,会存在{a,f(a),f(f(a)),...} \\记f(f(a))=f_2(a) \\\{a,f(a),f_2(a)\,....,f_n(a),...\}构成子集E \\对于每个a,f_i(a) \ne a=>E \ne X,E \ne \emptyset \\存在某个a,f_i(a) = a=>E \ne X,E \ne \emptyset 证:设aX,会存在a,f(a),f(f(a)),...f(f(a))=f2(a){a,f(a),f2(a)....,fn(a),...}构成子集E对于每个afi(a)=a=>E=X,E=存在某个afi(a)=a=>E=X,E=

参考文献

  • 《实变函数解题指南》周民强
  • 《实变函数论》周民强
  • 36
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值