一、为什么需要多核开发?
答案很简单,目前的芯片制造技术对CPU主频的提升已经达到一个极限了,也就是说性能的垂直伸缩已经不太可能了。因此通过多核的方法,可以让程序横向的伸 缩,这就类似于用多台服务器实现负载均衡(水平伸缩),而不是简单的靠将服务器升级成小型机来提供处理能力(垂直伸缩)。
虽然多核并行计算的概念已经存在了几十年了,但直到最近多核CPU在PC上的普及,多核开发才不得不提引起程序员的重视。
多核开发的本质就是使用多线程进行程序开发,我们在学数据结构和算法的时候,写的所有的算法都是面向单线程的。而多核开发的目的就是将这些算法改造成多线程的支持,然后系统运行时将这些多线程平均分配到多核处理器上,以实现运行的加速。
二、如何进行多核开发
如果你很熟悉POSIX threads (pthreads) 或者 WinAPI threads,你就可以自己进行开发。
如果你不想设计过多底层的线程操作,那就选择一个并发开发平台,由平台来自动协调,调度和管理多核资源。并发开发平台包括各种线程池的库,例如
.NET的ThreadPool类
Java的Concurrent类
消息传递环境,例如MPI
data-parallel编程环境,例如NESL, RapidMind, ZPL
task-parallel编程环境, 例如Intel的Threading Building Blocks (TBB) 和 Microsoft的Task Parallel Library (TPL)
动态编程环境,例如Cilk or Cilk++或者业界标准OpenMP.
这些并发平台通过提供语言抽象,扩充注释或者提供库函数的方式来支持多核开发。
三、使用并发开发平台具体有哪些好处
我们从下面几个方面来看:
软件开发中最重要的三个考虑的要素就是
程序的性能 (使用多核就是为了提升程序的性能的)
开发的时间
程序的可靠性
而其中影响开发时间的三个要素是
伸缩性:如果你自己编写线程,你必须考虑用户是双核,四核还是八核。如何将线程自动适应用户的核数,并且在多核上将线程均衡的负载。
代码简洁:直接使用底层线程库操作代码是十分复杂的
模块化:直接使用底层线程库操作还会破坏代码的模块化
四、具体实例
下面以Fibonacci的例子来演示:它的递归算法经常被用来作为多核开发的例子。
单核时代,我们写Fibonacci代码的方法如下:
- int fib(int n)
- {
- if (n < 2) return n;
- else {
- int x = fib(n-1);
- int y = fib(n-2);
- return x + y;
- }
- }
- int main(int argc, char *argv[])
- {
- int n = atoi(argv[1]);
- int result = fib(n);
- printf("Fibonacci of %d is %d./n", n, result);
- return 0;
- }
这个算法的核心就是f(n) = f(n-1) + f(n-2),当n很大时,我们希望计算f(n-1)和f(n-2)这两个任务能否分摊在一个双核处理器上同时执行。
如果直接使用WinAPI-threaded操作的代码如下:
- int fib(int n)
- {
- if (n < 2) return n;
- else {
- int x = fib(n-1);
- int y = fib(n-2);
- return x + y;
- }
- }
- typedef struct {
- int input;
- int output;
- } thread_args;
- void *thread_func ( void *ptr )
- {
- int i = ((thread_args *) ptr)->input;
- ((thread_args *) ptr)->output = fib(i);
- return NULL;
- }
- int main(int argc, char *argv[])
- {
- pthread_t thread;
- thread_args args;
- int status;
- int result;
- int thread_result;
- if (argc < 2) return 1;
- int n = atoi(argv[1]);
- if (n < 30) result = fib(n);
- else {
- args.input = n-1;
- status = pthread_create(thread,
- NULL, thread_func,
- (void*) &args );
- // main can continue executing while the thread executes.
- result = fib(n-2);
- // Wait for the thread to terminate.
- pthread_join(thread, NULL);
- result += args.output;
- }
- printf("Fibonacci of %d is %d./n", n, result);
- return 0;
- }
注意main里面的if(n<30),当n在30以内时,计算非常快,就不需要使用多线程,当n大于30之后,我们生成一个线程用来计算f(n- 1),而main的主线程将继续计算f(n-2),这样等两个线程都结束以后(pthread_join(thread, NULL);),我们将他们的结果相加。
从这个例子就可以看出,自己实现线程的缺点:
1 这个例子正好可以用两个线程分配在两个核上来实现,可如果一个任务需要16个线程同时执行,我们又不知道客户端到底是几核的CPU时,这个任务如何分配就成为一个问题。
2 这段代码非常不简洁
3 额外的结构和函数也破坏了算法本身的完整性。
下面我们使用多核支持库来实现该代码:
使用OpenMP
- int fib(int n) {
- int i, j;
- if (n<2)
- return n;
- else {
- #pragma omp task shared(i)
- i=fib(n-1);
- #pragma omp task shared(j)
- j=fib(n-2);
- #pragma omp taskwait
- return i+j;
- }
- }
使用Cilk++
- int fib(int n)
- {
- if (n < 2) return n;
- else {
- int x = cilk_spawn fib(n-1);
- int y = fib(n-2);
- cilk_sync;
- return x + y;
- }
- }
- int main(int argc, char *argv[])
- {
- int n = atoi(argv[1]);
- int result = fib(n);
- printf("Fibonacci of %d is %d./n", n, result);
- return 0;
- }
.NET Task Parallel Library中相应的例子
- Private Function FiboFullParallel(ByVal N As Long) As Long
- If N <= 0 Then Return 0
- If N = 1 Then Return 1
- Dim t1 As Tasks.Future(Of Long) = Tasks.Future(Of Long).Create( Function() FiboFullParallel(N - 1))
- Dim t2 As Tasks.Future(Of Long) = Tasks.Future(Of Long).Create( Function() FiboFullParallel(N - 2))
- Return t1.Value + t2.Value
- End Function
可以看到无论使用哪种并发平台,代码都非常简洁,没有破坏原有的算法封装,仅仅通过简单的改造就可以实现自动任务的分派。
五、什么情况下该使用多核编程呢?
如果一个任务的执行时间在10-100毫秒,那么就无需使用多核,因为将任务通过多线程分解到多核上计算,然后再将结果集合起来的开销大致需要100毫秒(当然具体多少依据机器的性能以及你所使用的编译器的性能),而且还需要消耗内存的空间。
在OpenMP里面我们可以使用"if clause"来给双核配置增加条件,例如下面的代码很明显,当n小于100000的时候,不使用多核,当n大于的时候再使用
- #pragma omp parallel for if(n > 100000)
- for (i = 0; i < n;, i++) {
- ...
- }
六、后记
本文旨在告诉你为何要进行多核开发,以及简单展示了多核开发平台的使用。实际的多核开发要复杂的多,而且我们知道目前的PC机的多核系统都是基于共享内存 的,虽然每个核都有自己的一级缓存。因此不同核上的线程在运行时就涉及到对资源竞争使用的问题。除此以外如果应用需要用到IO(硬盘,网络)的时候,也存 在同样的问题。因此多核的设计的难点就在于需要具体情况具体分析,找出多核应用的瓶颈,通过改进数据结构或算法,消除或优化这个瓶颈。