概念:
在计算机学科中,存在多项式时间的算法的一类问题,称之为P类问题;而像梵塔问题、推销员旅行问题、(命题表达式)可满足问题这类,至今没有找到多项式时间算法解的一类问题,称之为NP类问题
拿推销员旅行问题为例,假设推销员亨利有向6个城市推销公司产品的任务,并规定了一个旅行预算。他手中有一张航班票价表,他要从A城开始走遍图中的6个城市后返回A城,并且不超出预算,请你帮他找出应走的路线。如果给出的预算宽裕,则任务很简单;如果预算比较紧张,你就得认真设计路线了。你得考虑每一种可能的次序,以使旅费最少。
推销员旅行问题
如果有3个城市A,B和C,互相之间都有往返的飞机,而且起始城市是任意的,则有6种访问每个城市的次序:ABC,ACB,,BAC,BCA,CAB,CBA。如果有4个城市,则有24种次序,可以用阶乘来表示:4!=4×3!=4×3×2×1=24;若有5个城市,则有5!=5×4!=120,类似的有6!=720等等。即使用计算机来计算,这种急剧增长的可能性的数目也远远超过计算资源的处理能力,对此,算法复杂性专家史蒂芬.库克(Stephen Cook)评论:"如果有100个城市,需要求出100!条路线的费用,没有哪一台计算机能够胜任这一任务。打个比方,让太阳系中所有的电子以它旋转的频率来计算,就算太阳烧尽了也算不完。问题的关键是某些东西在实践中行不通。"
而NP问题中最困难的问题称之为NP完全问题,已经证明的包括:电话网络的最优几何设计、格子棋的最佳走法。根据库克定理,任意一个NP完全问题如果能够在多项式时间内解决,则所有的NP问题都能在多项式时间内解决,而至今这一问题仍无答案。
补充:时间复杂度
时间复杂度并不是表示一个程序解决问题需要花多少时间,而是当问题规模扩大后,程序需要的时间长度增长得有多快。也就是说,对于高速处理数据的计算机来说,处理某一个特定数据的效率不能衡量一个程序的好坏,而应该看当这个数据的规模变大到数百倍后,程序运行时间是否还是一样,或者也跟着慢了数百倍,或者变慢了数万倍。不管数据有多大,程序处理花的时间始终是那么多的,我们就说这个程序很好,具有O(1)的时间复杂度,也称常数级复杂度;数据规模变得有多大,花的时间也跟着变得有多长,这个程序的时间复杂度就是O(n),比如找n个数中的最大值;而像冒泡排序、插入排序等,数据扩大2倍,时间变慢4倍的,属于O(n^2)的复杂度。还有一些穷举类的算法,所需时间长度成几何阶数上涨,这就是O(a^n)的指数级复杂度,甚至O(n!)的阶乘级复杂度。不会存在O(2*n^2)的复杂度,因为前面的那个“2”是系数,根本不会影响到整个程序的时间增长。同样地,O (n^3+n^2)的复杂度也就是O(n^3)的复杂度。因此,我们会说,一个O(0.01*n^3)的程序的效率比O(100*n^2)的效率低,尽管在n很小的时候,前者优于后者,但后者时间随数据规模增长得慢,最终O(n^3)的复杂度将远远超过O(n^2)。我们也说,O(n^100)的复杂度小于O(1.01^n)的复杂度。
容易看出,前面的几类复杂度被分为两种级别,其中后者的复杂度无论如何都远远大于前者:一种是O(1),O(log(n)),O(n^a)等,我们把它叫做多项式级的复杂度,因为它的规模n出现在底数的位置;另一种是O(a^n)和O(n!)型复杂度,它是非多项式级的,其复杂度计算机往往不能承受。当我们在解决一个问题时,我们选择的算法通常都需要是多项式级的复杂度,非多项式级的复杂度需要的时间太多,往往会超时,除非是数据规模非常小。