numpy.linalg线性代数应用: inv, eig, det, solve, norm

本文介绍了numpy.linalg模块,包括计算矩阵的行列式、解线性方程组、求逆矩阵、获取特征值和特征向量以及计算矩阵范数等功能。详细展示了各函数的使用方法和实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

numpy.linalg模块包含线性代数的函数。使用这个模块,可以计算逆矩阵、求特征值、解线性方程组以及求解行列式等。

  • np.linalg.det() 计算输入矩阵的行列式
  • np.linalg.solve() 给出矩阵形式的线性方程的解
  • np.linalg.inv() 计算矩阵的乘法逆矩阵
  • np.linalg.eig() 求矩阵的特征值和特征向量
  • np.linalg.eigvals() 求矩阵的特征值
  • np.linalg.norm() 求矩阵的范数

np.linalg.det() 矩阵的行列式

对于矩阵[[a,b],[c,d]],行列式计算为 ad-bc。

import numpy as np
x = np.array([[0,1,2],[1,0,3],[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值