numpy 辨异(三)—— hstack/column_stack,linalg.eig/linalg.eigh

1. np.hstack np.column_stack

>>> np.hstack([np.array([1, 2, 3]), np.array([4, 5, 6])])
array([1, 2, 3, 4, 5, 6])

>>> np.column_stack([np.array([1, 2, 3]), np.array([4, 5, 6])])
array([[1, 4],
       [2, 5],
       [3, 6]])

当然对等地,也存在,np.vstack, np.row_stack

>>> np.vstack([np.array([1, 2, 3]), np.array([4, 5, 6])])
array([[1, 2, 3],
       [4, 5, 6]])

>>> np.row_stack([np.array([1, 2, 3]), np.array([4, 5, 6])])
array([[1, 2, 3],
       [4, 5, 6]])
                            # 两者近乎等效

2. np.linalg.eig() np.linalg.eigh()

首先一点,不管二者处理的是不是对称阵,两者处理的首先是方阵(square array)

两者均用于矩阵特征分解,np.linalg.eigh()适用于对称矩阵,可见矩阵分析中针对对称矩阵的特征值分解有一套特殊的不同于一般矩阵的理论。

def main():

    X = np.random.randn(3, 3)
    X = X.triu()
    X += (X.T-np.diag(X.diagonal()))
                        # 构造对称矩阵 X
    Lambda1, Q1 = np.linalg.eig(X)  
    Lambda2, Q2 = np.linalg.eigh(X)

    print(Lambda1)
                # [ 1.53176315 -0.35907022 -1.8924684 ]
                # 排序不太严格
    print(Lambda2)
                # [-1.8924684  -0.35907022  1.53176315]
                # 严格的升序

if __name__ == '__main__':
    main()

3. array.T vs array.transpose()

形式上array.T自然比array.transpose()这样一个函数调用形式稍显简洁。

>>> x = np.ones((3, 4))
>>> x.T
array([[ 1.,  1.,  1.],
       [ 1.,  1.,  1.],
       [ 1.,  1.,  1.],
       [ 1.,  1.,  1.]])
>>> x.transpose()
array([[ 1.,  1.,  1.],
       [ 1.,  1.,  1.],
       [ 1.,  1.,  1.],
       [ 1.,  1.,  1.]])

事实上,x.T == x.transpose(range(x.ndim)[::-1])

>>> x.transpose(range(x.ndim)[::-1])
array([[ 1.,  1.,  1.],
       [ 1.,  1.,  1.],
       [ 1.,  1.,  1.],
       [ 1.,  1.,  1.]])

4. np.triu np.tril

np.triu:upper triangle of an array
np.tril:lower triangle of an array

>>> x = np.array([[1, 2, 3], [3, 4, 5], [5, 6, 7], [7, 8, 9]])
>>> x
array([[1, 2, 3],
       [3, 4, 5],
       [5, 6, 7],
       [7, 8, 9]])
>>> np.triu(x)
array([[1, 2, 3],
       [0, 4, 5],
       [0, 0, 7],
       [0, 0, 0]])
>>> np.tril(x)
array([[1, 0, 0],
       [3, 4, 0],
       [5, 6, 7],
       [7, 8, 9]])

5. concatenate与hstack/vstack

注意,要进行拼接的数组都是以tuple_like((a, b))的形式传递给这三个函数的,

np.concatenate((a, b), axis=0) == np.vstack((a, b))
                    # 也对应于默认的情况,np.concatenate((a, b)) 
np.concatenate((a, b), axis=1) == np.hstack((a, b))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值