笔记《深入浅出数据分析》上

版权声明:本文为博主原创文章,转载请附带博客链接。 https://blog.csdn.net/saradx/article/details/53945403

这本书洪荒之力推荐。虽然是数据分析,全书都是案例,用对话的方式引导你深入学习。全程都在思考。反思这些年上学的经验,以为书就应该是一句句定义,描述,介绍,各种枯燥的说明文。而这本看似“不正经”的书,才是国内真正需要的书。当然也不是国内的书都是那么枯燥,像《人人都是产品经理》等书也都以聊天对话的方式开展。


————————————————————————————---

一、数据分析引言 数据无处不在

把问题视为机会,而向客户指出如何发现机会的数据分析师能让客户赢得竞争优势。

把问题和数据分解为更小的组块

确定——>分解——>评估——>决策

————————————————————————————---

二、实验 检验你的结论

随机调查表

统计只有与其他统计项关联,才能给人带来启发。比较越多,分析结果越正确。

当你开始怀疑因果关系的走向时,请进行反向思考,看看结果怎么样。——游客鞥是因果倒置哦

找出混杂因素

随机选择想死组:从对象池中随机选择对象是避免混杂因素的极好办法。在将对象随机分配到各个组里以后,最终结果是:可能成为混杂因素的那些因素最终在控制组和实验组中具有同票同权。

————————————————————————————---


三、最优化 寻找最大值

Microsoft Excel的函数插件Solver

心智模型应当包括你不了解的因素:一定要指出不确定隐私,只要能明确不确定因素,你就会小心防范并想办法填补知识空白,继而提出更好的建议。考虑不确定因素和盲点会让人感觉不爽,但回报显著。这种反查方法会揭示未知信息,而不是已知信息。数据分析也是如此,了解自己的知识缺陷非常重要。

如何看数据:

使用solver实例:

————————————————————————————---

四、数据图形化 图形让你更精明

要是你手头数据庞杂,而且对于如何处理哦这些数据没有把握,这时只要记住你的分析目标就行了:记住目标,目光停留在和目标有关的数据上,无视其他。

建议:继续使用主页3,对用户体验进行细化测试,细化内容包括各种导航方式、风格、内容等。对主页3与中不溶的表现可以有各种各样的解释,应对此进行调查并形成图表,但很明显,主页3已经胜出。

————————————————————————————---

五、假设检验 假设并非如此

伪证法

————————————————————————————---

六、贝叶斯统计

B j:1-n 为全概率事件

用基础概率和条件概率估计新的概率。

当你想象着自己在观察1000人时,就已经从思考改了转换为思考证书。我们的大脑生来就不擅长处理改了数字,因此将概率转变为证书,然后进行思考,是避免犯错的一个有效办法。



————————————————————————————---

七、主观概率 信念数字化

如果用一个数字形式的概率来表示自己对某事的确认程度,所用的就是主观概率。

主观概率是根据规律进行分析的巧妙方法,尤其是在预测孤立事件却缺乏从前在相同条件下发生过的事情的可靠数据的情况下。

这个图简直了

标准偏差度量分析点与平均值的偏差,点图是用R程序画的哦,EXCEL可以画但是会比较麻烦

——————————————————————



没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试