YOLO改进系列之注意力机制(GAM Attention模型介绍)

模型结构

为了提高计算机视觉任务的性能,人们研究了各种注意力机制。然而以往的方法忽略了保留通道和空间方面的信息以增强跨维度交互的重要性。因此,liu提出了一种通过减少信息弥散和放大全局交互表示来提高深度神经网络性能的全局注意力机制。作者的目标是设计一种注意力机制能够在减少信息弥散的情况下也能放大全局维交互特征,采用序贯的通道-空间注意力机制并重新设计了CBAM子模块,GAM Attention的整体结构如下图所示。
在这里插入图片描述

GAM Attention整体包含通道注意力模块和空间注意力这两个模块。通道注意子模块使用三维排列来在三个维度上保留信息。然后,它用一个两层的MLP放大跨维通道-空间依赖性。(MLP是一种编码-解码器结构,与BAM相同,其压缩比为r),通道注意子模块如下图所示。
在这里插入图片描述

在空间注意力子模块中,为了关注空间信息,使用两个卷积层进行空间信息融合,还从通道注意力子模块中使用了与BAM相同的缩减比r。与此同时,由于最大池化操作减少了信息的使用,产生了消极的影响。这里删除了池化操作以进一步保留特性映射。空间注意力子模块如下图所示。
在这里插入图片描述

实现代码

GAM Attention的实现代码如下所示:
在这里插入图片描述

YOLOv5模型改进

本文在YOLOv5目标检测算法的Backbone和Head部分分别加入GAM Attention来增强目标提取能力,以下分别是在Backbone以及Head中改进的模型结构和参数(以YOLOv5s为例)。
在Backbone部分
在这里插入图片描述
在这里插入图片描述

在Head部分
在这里插入图片描述
在这里插入图片描述

总结

GAM Attention提出一种通过减少信息弥散和放大全局交互表示来提高深度神经网络性能的全局注意力机制。此外,CloAttentionGAM Attention可进一步应用于YOLOv7、YOLOv8等模型中,欢迎大家关注本博主的微信公众号 BestSongC,后续更多的资源如模型改进、可视化界面等都会在此发布。另外,本博主最近也在MS COCO数据集上跑了一些YOLOv5的改进模型,实验表明改进后的模型能在MS COCO 2017验证集上分别涨点1-3%,感兴趣的朋友关注后回复YOLOv5改进。

GAM_Attention(Generalized Additive Models Attention)是一种注意机制,用于在神经网络中加强特征的表达能力。如果你想改进GAM_Attention注意力机制,可以考虑以下几个方面: 1. 模型结构调整:可以尝试修改GAM_Attention的网络结构,例如增加或减少注意力层的数量、调整注意力层的大小或深度等。这样可以探索不同的模型结构对于特征表达的影响。 2. 特征选择与组合:注意力机制可以用于选择和组合输入特征,你可以尝试不同的特征选择方法,例如基于信息增益或相关性的特征选择算法,或者尝试不同的特征组合方式,例如使用多层注意力机制来组合不同层次的特征。 3. 损失函数设计:损失函数对于模型的训练和优化非常重要。你可以尝试设计新的损失函数,以更好地适应你的任务需求。例如,可以引入正则化项来约束注意力权重的大小,或者设计自适应的损失函数来调整注意力权重的学习速率。 4. 数据增强与正则化:数据增强和正则化技术可以帮助提高模型的泛化能力和鲁棒性。你可以尝试在训练数据上应用不同的数据增强方法,例如旋转、缩放、平移等,或者使用正则化技术,例如Dropout、L1/L2正则化等,来减少过拟合现象。 5. 超参数调优:注意力机制中可能存在一些超参数,例如学习率、正则化系数等,你可以通过网格搜索或者贝叶斯优化等方法来寻找最优的超参数组合,以提高模型性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值