YOLO改进系列之注意力机制(GAM Attention模型介绍)

模型结构

为了提高计算机视觉任务的性能,人们研究了各种注意力机制。然而以往的方法忽略了保留通道和空间方面的信息以增强跨维度交互的重要性。因此,liu提出了一种通过减少信息弥散和放大全局交互表示来提高深度神经网络性能的全局注意力机制。作者的目标是设计一种注意力机制能够在减少信息弥散的情况下也能放大全局维交互特征,采用序贯的通道-空间注意力机制并重新设计了CBAM子模块,GAM Attention的整体结构如下图所示。
在这里插入图片描述

GAM Attention整体包含通道注意力模块和空间注意力这两个模块。通道注意子模块使用三维排列来在三个维度上保留信息。然后,它用一个两层的MLP放大跨维通道-空间依赖性。(MLP是一种编码-解码器结构,与BAM相同,其压缩比为r),通道注意子模块如下图所示。
在这里插入图片描述

在空间注意力子模块中,为了关注空间信息,使用两个卷积层进行空间信息融合,还从通道注意力子模块中使用了与BAM相同的缩减比r。与此同时,由于最大池化操作减少了信息的使用,产生了消极的影响。这里删除了池化操作以进一步保留特性映射。空间注意力子模块如下图所示。
在这里插入图片描述

实现代码

GAM Attention的实现代码如下所示:
在这里插入图片描述

YOLOv5模型改进

本文在YOLOv5目标检测算法的Backbone和Head部分分别加入GAM Attention来增强目标提取能力,以下分别是在Backbone以及Head中改进的模型结构和参数(以YOLOv5s为例)。
在Backbone部分
在这里插入图片描述
在这里插入图片描述

在Head部分
在这里插入图片描述
在这里插入图片描述

总结

GAM Attention提出一种通过减少信息弥散和放大全局交互表示来提高深度神经网络性能的全局注意力机制。此外,CloAttentionGAM Attention可进一步应用于YOLOv7、YOLOv8等模型中,欢迎大家关注本博主的微信公众号 BestSongC,后续更多的资源如模型改进、可视化界面等都会在此发布。另外,本博主最近也在MS COCO数据集上跑了一些YOLOv5的改进模型,实验表明改进后的模型能在MS COCO 2017验证集上分别涨点1-3%,感兴趣的朋友关注后回复YOLOv5改进。

<think>好的,用户的问题是如何在YOLOv5 7.0中集成注意力机制,需要示例教程。我需要先理解YOLOv5的结构以及常见的注意力机制模块。根据提供的引用资料,引用[3]提到SK模块应用在CSPDarknet53模块中,引用[4]介绍GAM注意力机制,而引用[5]涉及Ghost模块的代码。这些可能都是相关的。 首先,YOLOv5的架构分为Backbone、Neck和Head。注意力机制通常加在Backbone的特征提取部分,或者Neck中进行特征融合。用户需要具体的步骤,所以应该分步骤说明,比如修改common.py添加注意力模块,然后在模型配置yaml文件中引入该模块。 接下来,引用[4]中的GAMAttention示例可能适用。需要确认如何将GAM集成到YOLOv5中。步骤可能包括在common.py中定义GAM类,然后在yolo.py中注册该模块,最后在yaml配置文件中指定使用的位置。 另外,引用[3]提到的SK模块也是一个选项,可以给出不同的选择。用户可能希望有多种注意力机制的实现方式,比如SE、CBAM、GAM等,但根据问题,用户明确提到了YOLOv5 7.0,所以需要确保示例代码与该版本兼容。 需要检查YOLOv5 7.0的代码结构,确定common.py和yolo.py的位置,以及如何正确修改这些文件。比如,在common.py中添加新的类,然后在yolo.py中导入并注册,确保模型能正确解析配置文件中的参数。 可能还需要考虑参数传递,比如通道数的处理,注意力模块是否需要调整通道数。例如,GAM的结构可能需要调整输入输出的维度,确保和前后层匹配。 最后,用户可能需要验证集成的正确性,比如训练时的日志是否显示添加的模块,或者通过推理测试是否有效。这部分可能需要在回答中简要提及验证步骤,确保用户能够确认集成成功。 总结步骤应该是:添加模块代码到common.py,修改模型配置文件,然后运行训练命令。同时,提供不同的注意力机制选项,如GAM、SE、CBAM,让用户有更多选择。还要注意引用相关的资料,比如引用[3]和[4]中的内容,确保回答有依据。</think>### 如何在YOLOv5 7.0中集成注意力机制 #### 1. **理解注意力机制模块** 注意力机制通过增强关键特征通道或空间位置的重要性,提升模型对目标的关注能力。常见的注意力模块包括: - **SE(Squeeze-and-Excitation)**[^3] - **GAM(Global Attention Mechanism)**[^4] - **CBAM(Convolutional Block Attention Module)** #### 2. **修改代码文件** 以集成**GAM注意力**为例: ##### (1) **在`common.py`中添加模块定义** ```python class GAMAttention(nn.Module): def __init__(self, in_channels, reduction=16): super().__init__() self.channel_attention = nn.Sequential( nn.Linear(in_channels, in_channels // reduction), nn.ReLU(), nn.Linear(in_channels // reduction, in_channels) ) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, h, w = x.size() channel_avg = x.mean((2, 3)) # 全局平均池化 channel_att = self.channel_attention(channel_avg) channel_att = self.sigmoid(channel_att).view(b, c, 1, 1) return x * channel_att.expand_as(x) ``` ##### (2) **在`yolo.py`中注册模块** 确保在`parse_model`函数中能识别`GAMAttention`类: ```python if m in [..., GAMAttention]: args = [ch[f]] ``` #### 3. **修改模型配置文件(YAML)** 在`yolov5s.yaml`的Backbone或Neck部分插入注意力模块: ```yaml backbone: [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 [-1, 1, GAMAttention, [64]], # 新增GAM注意力 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 ...] ``` #### 4. **训练与验证** 运行训练命令时指定修改后的配置文件: ```bash python train.py --cfg yolov5_GAM.yaml --data coco.yaml --weights yolov5s.pt ``` 通过训练日志观察模块是否被正确加载,并验证精度提升效果。 --- ### 其他注意力模块实现示例 #### **SE模块(引用[3])** ```python class SEBlock(nn.Module): def __init__(self, c, r=16): super().__init__() self.avgpool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(c, c // r), nn.ReLU(), nn.Linear(c // r, c), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avgpool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y ``` #### **集成位置** 在C3模块中插入SEBlock: ```yaml [[-1, 1, C3, [128, SEBlock]], [-1, 1, Conv, [256, 3, 2]], ...] ``` --- ### 性能优化建议 1. **轻量化设计**:Ghost模块(引用[5])可减少计算量。 2. **注意力位置选择**:优先在高层特征图(如P5层)添加,避免低层噪声干扰[^2]。 3. **混合使用模块**:结合通道注意力(如SE)和空间注意力(如CBAM)提升效果。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值