YOLO改进系列之注意力机制(GatherExcite模型介绍)

模型结构

尽管在卷积神经网络(CNN)中使用自底向上的局部运算符可以很好地匹配自然图像的某些统计信息,但它也可能阻止此类模型捕获上下文的远程特征交互。Hu等人提出了一种简单,轻量级的方法,以在CNN中更好地利用上下文。通过引入一对运算符来做到这一点:Gather可以有效地在很大的空间范围内聚合特征响应,而Excite可以将合并的信息重新分布到局部特征。GatherExcite构造了一个轻量级函数来收集大范围邻域上的特征响应,并使用所得到的上下文信息来调制邻域元素的原始响应。具体地说,其定义了Gather算子和Excite算子,前者聚集给定空间范围上的神经元响应,后者接受聚集和原始输入,以产生与原始输入维度相同的新张量。GE算符对如图1所示。
在这里插入图片描述

实现代码

GatherExcite的实现代码如下所示:
在这里插入图片描述

YOLOv5模型改进

本文在YOLOv5目标检测算法的Backbone和Head部分分别加入GatherExcite来增强目标提取能力,以下分别是在Backbone以及Head中改进的模型结构和参数(以YOLOv5s为例)。
在Backbone部分
在这里插入图片描述
在这里插入图片描述

在Head部分

在这里插入图片描述
在这里插入图片描述

总结

为了高效利用CNN中的特征上下文,GatherExcite被提出,大量实验证明该方法在多个数据集和模型体系结构中的有效性。此外,GatherExcite可进一步应用于YOLOv7、YOLOv8等模型中,欢迎大家关注本博主的微信公众号 BestSongC,后续更多的资源如模型改进、可视化界面等都会在此发布。另外,本博主最近也在MS COCO数据集上跑了一些YOLOv5的改进模型,实验表明改进后的模型能在MS COCO 2017验证集上分别涨点1-3%,感兴趣的朋友关注后回复YOLOv5改进。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
YOLO(You Only Look Once)是一种常用的目标检测算法,它通过将图像划分为网格单元,并在每个单元中预测边界框和类别来实现目标检测。然而,原始的YOLO算法存在一些注意力不足的问题,导致在复杂场景下容易错过小目标或者出现多个边界框的问题。 为了改进YOLO注意力机制,可以考虑以下几点: 1. 多尺度注意力:通过在不同尺度上应用注意力机制,可以提高对不同大小目标的检测能力。可以使用特征金字塔网络(Feature Pyramid Network,FPN)来获取多尺度的特征,并在每个尺度上应用注意力机制。 2. 上下文信息融合:除了单纯关注目标物体的特征,还可以引入上下文信息来提升注意力机制。可以使用全局上下文注意力机制,将整个图像的信息融入到目标检测中,从而更好地理解目标所在的环境。 3. 动态注意力:基于目标的重要性和复杂性,可以采用动态调整的注意力机制。例如,可以根据目标的大小、位置、形状等因素动态调整不同区域的注意力权重,以提高对关键目标的检测精度。 4. 多任务学习:除了目标检测,可以将其他任务(例如语义分割、实例分割等)与注意力机制相结合,以进一步提升模型的性能。通过共享注意力机制和特征提取器,可以实现多个任务之间的信息交互和互补。 综上所述,通过引入多尺度注意力、上下文信息融合、动态调整和多任务学习等方法,可以改进YOLO算法的注意力机制,提高目标检测的准确性和鲁棒性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值