17. 正交矩阵和schmidt正交化

1. 标准正交基

标准正交基是长度均1的基向量,在子空间中所有标准正交基均互相垂直,即它们的点积为0。
长度为 1 的向量 q 1 , q 2 , … , q n q_1,q_2,\dots,q_n q1,q2,,qn,满足如下等式,表示为标准正交基:
q i T q j = { 0 , i ≠ j 1. i = j , ∣ ∣ q i ∣ ∣ = 1 \begin{equation} q_i^Tq_j=\left\{ \begin{array}{ll} 0, &i \neq j \\ 1.&i=j\\ \end{array}, \quad ||q_i||=1 \right. \end{equation} qiTqj={0,1.i=ji=j,∣∣qi∣∣=1

  • 标准正交基是为什么会让计算变得更好
    假设我们有矩阵Q是n行n列情况下,矩阵Q里面包含n个标准正交基 q i q_i qi,表示如下:
    Q = [ q 1 q 2 … q n ] , Q T = [ q 1 T q 2 T ⋮ q n T ] , Q T Q = I \begin{equation} Q=\begin{bmatrix} q_1&q_2&\dots&q_n \end{bmatrix},Q^T=\begin{bmatrix} q_1^T\\\\q_2^T\\\\\vdots\\\\q_n^T \end{bmatrix},Q^TQ=I \end{equation} Q=[q1q2qn],QT= q1Tq2TqnT ,QTQ=I
  • 我们记得对于矩阵A来说,我们想把向量b投影到矩阵A的列空间中,可以组建一个投影矩阵P
    P = A ( A T A ) − 1 A T \begin{equation} P=A(A^TA)^{-1}A^T \end{equation} P=A(ATA)1AT
  • 我们将标准正交矩阵Q来代替A,整理可得:
    P = Q ( Q T Q ) − 1 Q T = Q Q T \begin{equation} P=Q(Q^TQ)^{-1}Q^T=QQ^T \end{equation} P=Q(QTQ)1QT=QQT
  • 如果矩阵Q是方阵,并且满足 Q T Q = I Q^TQ=I QTQ=I,那么可得 Q T = Q − 1 Q^T=Q^{-1} QT=Q1
  • 置换矩阵M
    M = [ 0 0 1 1 0 0 0 1 0 ] ; M − 1 = [ 0 1 0 0 0 1 1 0 0 ] = M T ; \begin{equation} M=\begin{bmatrix}0&0&1\\\\1&0&0\\\\0&1&0\end{bmatrix};M^{-1}=\begin{bmatrix}0&1&0\\\\0&0&1\\\\1&0&0\end{bmatrix}=M^T; \end{equation} M= 010001100 ;M1= 001100010 =MT;
  • 旋转矩阵R
    R = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] ; R − 1 = [ cos ⁡ θ sin ⁡ θ − sin ⁡ θ cos ⁡ θ ] = R T ; \begin{equation} R=\begin{bmatrix}\cos{\theta}&-\sin{\theta}\\\\\sin{\theta}&\cos{\theta}\end{bmatrix};R^{-1}=\begin{bmatrix}\cos{\theta}&\sin{\theta}\\\\-\sin{\theta}&\cos{\theta}\end{bmatrix}=R^T; \end{equation} R= cosθsinθsinθcosθ ;R1= cosθsinθsinθcosθ =RT;
  • θ = − π 4 , R − 1 = 1 2 [ 1 1 1 − 1 ] ; \theta=-\frac{\pi}{4},R^{-1}=\frac{1}{\sqrt{2}}\begin{bmatrix}1&1\\\\1&-1\end{bmatrix}; θ=4π,R1=2 1 1111 ;
  • 哈达玛矩阵H
    H = 1 2 [ 1 1 1 1 1 − 1 1 − 1 1 1 − 1 − 1 1 − 1 − 1 1 ] \begin{equation} H=\frac{1}{2}\begin{bmatrix}1&1&1&1\\\\1&-1&1&-1\\\\1&1&-1&-1\\\\1&-1&-1&1\end{bmatrix} \end{equation} H=21 1111111111111111

2. 正交矩阵

假设我们有一个标准正交矩阵Q,表示如下:
Q = 1 3 [ 1 − 2 2 2 − 1 − 2 2 2 1 ] \begin{equation} Q=\frac{1}{3}\begin{bmatrix}1&-2&2\\\\2&-1&-2\\\\2&2&1\end{bmatrix} \end{equation} Q=31 122212221
我们想将矩阵投影到矩阵Q的列空间中,根据上节讲到的问题,假设Q满秩, Q T Q = I Q^TQ=I QTQ=I,投影矩阵P表示如下:
P = A ( A T A ) − 1 A T ⇒ P = Q ( Q T Q ) − 1 Q T = Q Q T \begin{equation} P=A(A^TA)^{-1}A^T\Rightarrow P=Q(Q^TQ)^{-1}Q^T=QQ^T \end{equation} P=A(ATA)1ATP=Q(QTQ)1QT=QQT

  • 当Q时方阵,且Rank(Q)=n,可以得到 Q − 1 = Q T Q^{-1}=Q^T Q1=QT,那么投影矩阵 P = Q Q − 1 = I P=QQ^{-1}=I P=QQ1=I

3. 线性回归

当我们在解方程中,发现无法得到准确的解,我们需要将向量b投影到矩阵A的列空间中,从而得到近似解 X ^ \hat{X} X^ , 根据上节内容,可以得到最小二乘法,也就是线性回归方程,表示如下:
A T A X ^ = A T b \begin{equation} A^TA\hat{X}=A^Tb \end{equation} ATAX^=ATb

  • 我们将矩阵A用正交矩阵Q代替,定义矩阵Rank(Q)=n,得到 Q T Q = I Q^TQ=I QTQ=I 可以得到如下方程:
    Q T Q X ^ = Q T b ⇒ X ^ = Q T b \begin{equation} Q^TQ\hat{X}=Q^Tb\Rightarrow \hat{X}=Q^Tb \end{equation} QTQX^=QTbX^=QTb
    x i ^ = q i T b \begin{equation} \hat{x_i}=q_i^Tb \end{equation} xi^=qiTb
  • 重点:在数学领域,当我们已知一组标准正交基,那么我们可以将向量b 通过上述式子,直接得到标准正交基中的近似解 x i ^ \hat{x_i} xi^,真是神奇!!!这样就会很简单的把一个复杂的求解过程,变换成简单的方式来得到近似解!!!!数学神奇!!!

4. Gram-Schmidt 正交化

Gram-Schmidt 的作用是将原本不垂直和不正交的向量a,b,转换后变成两个向量 a 1 , b 1 a_1,b_1 a1,b1,并且使得 ∣ ∣ a 1 ∣ ∣ = 1 , ∣ ∣ b 1 ∣ ∣ = 1 ||a_1||=1,||b_1||=1 ∣∣a1∣∣=1,∣∣b1∣∣=1

4.1 求投影矩阵p

假设我们有两个向量a,b ,我们要求向量b 在向量a上的投影向量p;
在这里插入图片描述

  • 向量p的长度|p|
    a T b = ∣ a ∣ ⋅ ∣ b ∣ ⋅ cos ⁡ ( θ ) ; ⇒ ∣ p ∣ = a T b ∣ a ∣ \begin{equation} a^Tb=|a|\cdot|b|\cdot\cos(\theta);\Rightarrow |p|=\frac{a^Tb}{|a|} \end{equation} aTb=abcos(θ);p=aaTb
  • 向量p的方向单位向量 p 0 p_0 p0
    p 0 = a ∣ a ∣ \begin{equation} p_0=\frac{a}{|a|} \end{equation} p0=aa
  • 那么投影矩阵p 表示如下, a T a = ∣ a ∣ ⋅ ∣ a ∣ a^Ta=|a|\cdot|a| aTa=aa
    p = ∣ p ∣ p 0 = a T b ∣ a ∣ a ∣ a ∣ = a T b a T a a \begin{equation} p=|p|p_0=\frac{a^Tb}{|a|}\frac{a}{|a|}=\frac{a^Tb}{a^Ta}a \end{equation} p=pp0=aaTbaa=aTaaTba
  • 那么与向量a垂直的向量e 可以表示如下:
    e = b − p = b − a T b a T a a \begin{equation} e=b-p=b-\frac{a^Tb}{a^Ta}a \end{equation} e=bp=baTaaTba
    跟Gram-Schmidt 变换一样!
  • 那我们来验证下是否e与向量a垂直
    a T e = a T ( b − a T b a T a a ) = a T b − a T a T b a T a a \begin{equation} a^Te=a^T(b-\frac{a^Tb}{a^Ta}a)=a^Tb-\frac{a^Ta^Tb}{a^Ta}a \end{equation} aTe=aT(baTaaTba)=aTbaTaaTaTba
  • 由于 a T b = b T a ; a^Tb=b^Ta; aTb=bTa;且为常数,可以放在任意位置
    a T e = a T b − a T a ⋅ a T b a T a = a T b − a T b = 0 \begin{equation} a^Te=a^Tb-\frac{a^Ta\cdot a^Tb}{a^Ta}=a^Tb-a^Tb=0 \end{equation} aTe=aTbaTaaTaaTb=aTbaTb=0
    a ⊥ e \begin{equation} a\perp e \end{equation} ae
  • 求第三个正交向量c,那我们知道的是,我们只需要用向量c ,减去c在向量a上的分量,向量b上的分量即可
    c = c − a T c a T a a − b T c b T b b \begin{equation} c = c-\frac{a^Tc}{a^Ta}a-\frac{b^Tc}{b^Tb}b \end{equation} c=caTaaTcabTbbTcb
  • 验证是否满足垂直条件
    a T c = a T c − a T a T c a T a a − a T b T c b T b b \begin{equation} a^Tc = a^Tc-\frac{a^Ta^Tc}{a^Ta}a-\frac{a^Tb^Tc}{b^Tb}b \end{equation} aTc=aTcaTaaTaTcabTbaTbTcb
    b T c = b T c − b T a T c a T a a − b T b T c b T b b \begin{equation} b^Tc = b^Tc-\frac{b^Ta^Tc}{a^Ta}a-\frac{b^Tb^Tc}{b^Tb}b \end{equation} bTc=bTcaTabTaTcabTbbTbTcb
  • a T c , b T c a^Tc,b^Tc aTc,bTc 均为常数,可以任意调整位置,且 a T b = b T a = 0 a^Tb=b^Ta=0 aTb=bTa=0
    a T c = a T c − a T a a T a a T c − a T b b T b b T c = a T c − a T c − 0 = 0 \begin{equation} a^Tc = a^Tc-\frac{a^Ta}{a^Ta}a^Tc-\frac{a^Tb}{b^Tb}b^Tc=a^Tc-a^Tc-0=0 \end{equation} aTc=aTcaTaaTaaTcbTbaTbbTc=aTcaTc0=0
    b T c = b T c − b T a a T a a T c − b T b b T b b T c = b T c − 0 − b T c = 0 \begin{equation} b^Tc =b^Tc-\frac{b^Ta}{a^Ta}a^Tc-\frac{b^Tb}{b^Tb}b^Tc=b^Tc-0-b^Tc=0 \end{equation} bTc=bTcaTabTaaTcbTbbTbbTc=bTc0bTc=0
  • 通过Gramd-Schmidt 变换后,新成立的向量a,b,c 均相互正交。
    a ⊥ b ⊥ c \begin{equation} a\perp b \perp c \end{equation} abc
  • 最后就是将向量a,b,c 长度变为1
    a = a ∣ ∣ a ∣ ∣ , b = b ∣ ∣ b ∣ ∣ , c = c ∣ ∣ c ∣ ∣ \begin{equation} a=\frac{a}{||a||},b=\frac{b}{||b||},c=\frac{c}{||c||} \end{equation} a=∣∣a∣∣a,b=∣∣b∣∣b,c=∣∣c∣∣c

4.2 Gramd-schmidt计算

假设我们有两个向量a,b 表示如下:
a = [ 1 1 1 ] , b = [ 1 0 2 ] , c = [ 1 2 1 ] \begin{equation} a=\begin{bmatrix}1\\\\1\\\\1 \end{bmatrix},b=\begin{bmatrix}1\\\\0\\\\2 \end{bmatrix},c=\begin{bmatrix}1\\\\2\\\\1 \end{bmatrix} \end{equation} a= 111 ,b= 102 ,c= 121

  • 计算正交后的a,b
    a = a = [ 1 1 1 ] , b = b − a T b a T a a = [ 0 − 1 1 ] \begin{equation} a=a=\begin{bmatrix}1\\\\1\\\\1 \end{bmatrix},b=b-\frac{a^Tb}{a^Ta}a=\begin{bmatrix}0\\\\-1\\\\1 \end{bmatrix} \end{equation} a=a= 111 ,b=baTaaTba= 011
  • 计算正交后的c,这里的b 是正交后的b,重点!!!!
    c = c − a T c a T a a − b T c b T b b = [ − 1 3 1 6 1 6 ] \begin{equation} c=c-\frac{a^Tc}{a^Ta}a-\frac{b^Tc}{b^Tb}b=\begin{bmatrix}-\frac{1}{3}\\\\\frac{1}{6}\\\\\frac{1}{6} \end{bmatrix} \end{equation} c=caTaaTcabTbbTcb= 316161
    q 1 = a ∣ ∣ a ∣ ∣ = 1 3 [ 1 1 1 ] , q 2 = b ∣ ∣ b ∣ ∣ = 1 2 [ 0 − 1 1 ] ; q 3 = c ∣ ∣ c ∣ ∣ = 1 6 [ − 2 1 1 ] \begin{equation} q_1=\frac{a}{||a||}=\frac{1}{\sqrt{3}}\begin{bmatrix}1\\\\1\\\\1 \end{bmatrix},q_2=\frac{b}{||b||}=\frac{1}{\sqrt{2}}\begin{bmatrix}0\\\\-1\\\\1 \end{bmatrix};q_3=\frac{c}{||c||}=\frac{1}{\sqrt{6}}\begin{bmatrix}-2\\\\1\\\\1 \end{bmatrix} \end{equation} q1=∣∣a∣∣a=3 1 111 ,q2=∣∣b∣∣b=2 1 011 ;q3=∣∣c∣∣c=6 1 211

4.3 矩阵分解

在用行消元的过程中我们得到如下:

  • L为下三角矩阵,U为上三角矩阵
    A X = L U X \begin{equation} AX=LUX \end{equation} AX=LUX
  • 现在我们通过Gramd-Schmidt正交得到如下
  • Q为m行n列的标准正交向量组矩阵,R为n行n列的正线上的三角阵
    A m × n X = Q m × n R n × n X \begin{equation} A_{m\times n}X=Q_{m\times n}R_{n\times n}X \end{equation} Am×nX=Qm×nRn×nX
  • 14
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值