动手学深度学习7.3 网络中的网络(NiN)-笔记&练习(PyTorch)

以下内容为结合李沐老师的课程和教材补充的学习笔记,以及对课后练习的一些思考,自留回顾,也供同学之人交流参考。

本节课程地址:26 网络中的网络 NiN【动手学深度学习v2】_哔哩哔哩_bilibili

本节教材地址:7.3. 网络中的网络(NiN) — 动手学深度学习 2.0.0 documentation (d2l.ai)

本节开源代码:...>d2l-zh>pytorch>chapter_multilayer-perceptrons>nin.ipynb


网络中的网络(NiN)

LeNet、AlexNet和VGG都有一个共同的设计模式:通过一系列的卷积层与汇聚层来提取空间结构特征;然后通过全连接层对特征的表征进行处理。 AlexNet和VGG对LeNet的改进主要在于如何扩大和加深这两个模块。 或者,可以想象在这个过程的早期使用全连接层。然而,如果使用了全连接层,可能会完全放弃表征的空间结构。 网络中的网络NiN)提供了一个非常简单的解决方案:在每个像素的通道上分别使用多层感知机 (href="https://zh.d2l.ai/chapter_references/zreferences.html#id93">Linet al., 2013)。

(NiN块)

回想一下,卷积层的输入和输出由四维张量组成,张量的每个轴分别对应样本、通道、高度和宽度。 另外,全连接层的输入和输出通常是分别对应于样本和特征的二维张量。 NiN的想法是在每个像素位置(针对每个高度和宽度)应用一个全连接层。 如果我们将权重连接到每个空间位置,我们可以将其视为 1×1 卷积层(如6.4节 中所述),或作为在每个像素位置上独立作用的全连接层。 从另一个角度看,即将空间维度中的每个像素视为单个样本,将通道维度视为不同特征(feature)。

图7.3.1 说明了VGG和NiN及它们的块之间主要架构差异。 NiN块以一个普通卷积层开始,后面是两个1×1 的卷积层。这两个 1×1 卷积层充当带有ReLU激活函数的逐像素全连接层。 第一层的卷积窗口形状通常由用户设置。 随后的卷积窗口形状固定为 1×1。

7.3.1 对比 VGG 和 NiN 及它们的块之间主要架构差异。

import torch
from torch import nn
from d2l import torch as d2l


def nin_block(in_channels, out_channels, kernel_size, strides, padding):
    return nn.Sequential(
        nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),
        nn.ReLU(),
        nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU(),
        nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU())

[NiN模型]

最初的NiN网络是在AlexNet后不久提出的,显然从中得到了一些启示。 NiN使用窗口形状为 11×11 、 5×5 和 3×3 的卷积层,输出通道数量与AlexNet中的相同。 每个NiN块后有一个最大汇聚层,汇聚窗口形状为3×3,步幅为2。

NiN和AlexNet之间的一个显著区别是NiN完全取消了全连接层。 相反,NiN使用一个NiN块,其输出通道数等于标签类别的数量。最后放一个全局平均汇聚层(global average pooling layer),生成一个对数几率 (logits)。NiN设计的一个优点是,它显著减少了模型所需参数的数量。然而,在实践中,这种设计有时会增加训练模型的时间。

net = nn.Sequential(
    nin_block(1, 96, kernel_size=11, strides=4, padding=0),
    nn.MaxPool2d(3, stride=2),
    nin_block(96, 256, kernel_size=5, strides=1, padding=2),
    nn.MaxPool2d(3, stride=2),
    nin_block(256, 384, kernel_size=3, strides=1, padding=1),
    nn.MaxPool2d(3, stride=2),
    nn.Dropout(0.5),
    # 标签类别数是10
    nin_block(384, 10, kernel_size=3, strides=1, padding=1),
    nn.AdaptiveAvgPool2d((1, 1)),
    # 将四维的输出转成二维的输出,其形状为(批量大小,10)
    nn.Flatten())

我们创建一个数据样本来[查看每个块的输出形状]。

X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape:\t', X.shape)

输出结果:
Sequential output shape: torch.Size([1, 96, 54, 54])
MaxPool2d output shape: torch.Size([1, 96, 26, 26])
Sequential output shape: torch.Size([1, 256, 26, 26])
MaxPool2d output shape: torch.Size([1, 256, 12, 12])
Sequential output shape: torch.Size([1, 384, 12, 12])
MaxPool2d output shape: torch.Size([1, 384, 5, 5])
Dropout output shape: torch.Size([1, 384, 5, 5])
Sequential output shape: torch.Size([1, 10, 5, 5])
AdaptiveAvgPool2d output shape: torch.Size([1, 10, 1, 1])
Flatten output shape: torch.Size([1, 10])

[训练模型]

和以前一样,我们使用Fashion-MNIST来训练模型。训练NiN与训练AlexNet、VGG时相似。

lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

输出结果:
loss 0.352, train acc 0.871, test acc 0.874
1721.5 examples/sec on cuda:0

小结

  • NiN使用由一个卷积层和多个 1×1 卷积层组成的块。该块可以在卷积神经网络中使用,以允许更多的每像素非线性。
  • NiN去除了容易造成过拟合的全连接层,将它们替换为全局平均汇聚层(即在所有位置上进行求和)。该汇聚层通道数量为所需的输出数量(例如,Fashion-MNIST的输出为10)。
  • 移除全连接层可减少过拟合,同时显著减少NiN的参数。
  • NiN的设计影响了许多后续卷积神经网络的设计。

练习

  1. 调整NiN的超参数,以提高分类准确性。

解:
代码如下:

lr, num_epochs, batch_size = 0.05, 20, 128
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

输出结果:
loss 0.281, train acc 0.896, test acc 0.885
1719.9 examples/sec on cuda:0

2. 为什么NiN块中有两个 1×1 卷积层?删除其中一个,然后观察和分析实验现象。

解:
第一个 
1×1 卷积层作用是降维:用于减少特征图的通道数,从而降低网络的参数数量和计算复杂度,有助于防止过拟合,并使网络更加高效。
第二个 
1×1 卷积层作用是增加网络深度和像素的非线性性:对第一个卷积层的输出进行非线性变换,有助于网络学习更复杂的特征表示。通过这种方式,网络可以在保持参数数量相对较低的同时,增加其表达能力。
同时,
1×1 卷积层可以融合每个像素点不同通道的特征,因此也具有特征融合的作用。
删除其中一个 
1×1 卷积层后,训练损失略上升,训练和测试精度略下降,可能导致网络学习特征能力下降、非线性性降低,从而导致精度略下降。

def nin_block(in_channels, out_channels, kernel_size, strides, padding):
    return nn.Sequential(
        nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),
        nn.ReLU(),
        nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU())
lr, num_epochs, batch_size = 0.1, 10, 128
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

输出结果:
loss 0.360, train acc 0.867, test acc 0.869
2208.1 examples/sec on cuda:0

3. 计算NiN的资源使用情况。

1)参数的数量是多少?

2)计算量是多少?

3)训练期间需要多少显存?

4)预测期间需要多少显存?

解:
计算过程如下:

对于一张图(1, 224, 224)而言:
1)参数的数量为:1.92 MB;
2)计算量为:1.55 GB;
3)训练期间的显存为参数占用显存+模型占用显存:
参数占用显存:1.92 * 4 * 2 = 15.38 MB (float32占4 bytes,1 for params, 1 for SGD)
模型占用显存:6.35 * 4 * 2 = 50.80 MB (float32占4 bytes,1 for forward, 1 for backward)
总占用显存:15.38 + 50.80 = 66.18 MB
4)预测期间的显存为参数占用显存+模型占用显存:
参数占用显存:1.92 * 4 = 7.69 MB (float32占4 bytes,only for params)
模型占用显存:6.35 * 4 = 25.40 MB (float32占4 bytes,only for forward)
总占用显存:7.69 + 25.40 = 33.09 MB

4. 一次性直接将 384×5×5 的表示缩减为 10×5×5 的表示,会存在哪些问题?
解:
一次性直接将 384×5×5 的表示缩减为 10×5×5 的表示,即不经过两个 1×1 卷积层降维,可能存在的问题有:
1)可能会丢失大量的信息。
2)可能过拟合增大:当特征维度降低太多时,网络可能无法捕捉到足够的特征来泛化到新的数据上。
3)可能学习能力下降:大幅度降低特征维度会限制网络的学习能力,使其难以学习复杂的函数映射。
4)可能破坏特征融合:不同层的特征图会通过 1 \times 1 卷积层进行融合,以提取更加抽象的特征。如果直接大幅度减少特征维度,可能会破坏这种特征融合的过程,影响网络性能。
5)可能会导致梯度消失或梯度爆炸。

  • 6
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

scdifsn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值