在过去几个月中,Apollo代码达到了每周数十次的更新频率,新增代码数量共计可以达16.5万行。
如今近8000个开发者投票支持Apollo开源软件,超过1800个合作伙伴使用Apollo开源代码,100多个合作伙伴申请开放数据。
了解到这些,作为百度Apollo开发者阵营中的一员,也是一个30年资深的“金领码农”,老黄坐不住了,本着对自动驾驶的热忱以及对百度Apollo平台的兴趣,做了一件“惊天动地”的事儿!
对了,先介绍下我们文章的主人公老黄吧!
老黄,本名黄英君,1991年就读国防科技大学,系统工程与数学系、多媒体与虚拟现实专业方向博士,师从吴玲达教授。
毕业留校工作,在管理科学与工程学院从事视频分析与编解码、机器视觉、智能硬件方面的研究工作。
2012年转业,工作于中科院软件所广州分所,任商业智能实验室主任,从事电商平台与大数据分析方面的研究与软件开发工作。
2017年9月,加盟长沙智能驾驶研究院,任产品研发部门负责人,从事智能驾驶方面解决方案与产品的开发工作。
老黄究竟做了一件什么事儿呢?
老黄利用Apollo提供的各种资源与能力,自研成功解决了TX2嵌入式计算平台(NVIDIA JETSON TX2)适配Docker的尝试,简单来说就是使用低成本方案搭建部署了Apollo环境,值得注意的是此前官方并没有发布相关部署的指导文件……
最最重要的一点,细心的老黄不但完成了技术尝试,还将整体的过程做了完备的记录,总结了一份环境搭建攻略并分享出来。说到这里,小编也不禁为老黄这位开发者无私分享的行为疯狂打call!
是什么原因让老黄做了这么一件有意义的事情?
谈及原因,老黄很实在。
一方面是因为公司有需求,想通过一辆林肯mkz实验自动驾驶算法方面的研发水平。
还有一个特殊根源在于,公司预定了英伟达AI超算平台的高端产品PX2做一些产品规划,但货品迟迟未到,老黄想着同样是该系列的产品,或许TX2会有更多的惊喜发现。
最重要的一点,像老黄一样的开发者一直觉得,自动驾驶研发的目的不是取代人,而是应该走向普通人的生活,用来提升驾驶乐趣,如果开发成本很高,就很难体现其中的价值。
他对小编说:“如果用看似很低端的设备,用极低的成本实现自动驾驶的某些功能,那就是一件特漂亮的事情,所以我就大胆的做了这个!”
其实,老黄作为自动驾驶领域的开发者,在百度Apollo出现之前,一直关注Autoware**(城市自主驾驶的开源软件)**的源码,也就是日本名古屋大学的那款。他自己觉得,从最初的感觉来看,Autoware更像一个完整的解决方案,东西很全……Apollo生态出现后,觉得很有兴趣,很有实操感,瞬间转成“真爱粉”,这也是尝试的原因所在。
选择NVIDIA TX2,老黄前后思索了很久…
老黄可以称之为资深程序员,漫长的职业生涯中专攻软件整体架构和性能优化,尤其关注软件的总体构建方案、软件与硬件的整合以及算法的优化等方面,对很多市面上的算法平台都研究过。
说到选择NVIDIA TX2,老黄还有点儿感慨,“现在做平台的太多了,如恩智浦的BlueBox,再就是NVIDIA的TX&PX系列,还分了很多流派,什么NVIDIA、英特尔……可是大多数都还没有完全推出市场,成熟度也不算很高,这是比较头疼的事情。NVIDIA这个品牌吧,产品布局早,成品本身技术属性也很强大,像TX2,6核CPU,256个GPU单位,功耗15瓦,本身小巧轻便,集成度很赞,天然适合放在汽车这个环境里做研发!”