3D点云数据分析与处理-传统方法与深度学习

0.摘要

      基于 3D视觉的新兴应用场景蓬勃发展,3D点云越来越受到人们的广泛关注。点云有着广泛的应用领域包括机器人技术、3D图形、自动驾驶、虚拟现实(AR/VR/MR)等。为了跟上不断增长的应用需要,研究和开发有效存储、处理的相关算法来处理点云的意义正显著上升。传统的分析算法处理点云,主要侧重于对点的局部几何特征进行编码。深度学习在图像数据处理领域取得了巨大的成功,这使得研究相应的点云神经网络结构有极其现实的迫切需求。当前的研究热点主要涉及发展用于各种点云处理任务的深度神经网络。

1. 3D点云数据

1.1 3D点云定义

3D数据的表述形式一般分为以下四种:

a) 点云:由N 个D维的点组成,当这个D =3的时候一般代表着(x,y,z)的坐标,当然也可以包括一些法向量、强度等别的特征。这是今天主要讲述的数据类型。

b) Mesh:由三角面片和正方形面片组成。

c) 体素:由三维栅格将物体用0和1表征。

d) 多角度的RGB图像或者RGB-D图像

3D 点云是三维空间中的点的数据集, 点云用来表示对象的 3D 表面。 每个点由三个坐标(X,YZ)组成唯一标识其相对于正交轴的位置。通常,R、G、B 颜色值和表面法线等附加信息也可以嵌入为点属性,具体取决于用于捕获点的传感器。 通常意义上的点云包含大量的点(成千上万甚至更多)。 与采用规则网格表示的 2D 图像不同,3D 点云是无组织的,没有特定的顺序。 这种无序的性质使得在处理点云和设计方法时需考虑其特殊性。

1.2 点云数据的获取

3D 点云的形成与 2D 图像的形成方式显著不同。 2D 图像是一种光学现象,对于来自环境的光线使用镜头捕获,该镜头在 2D 图像平面上产生倒置图像,然后调整形成正立图像。相比之下,通常使用 LiDAR 传感器获取 3D 点云。 激光雷达(LiDAR)代表光检测和测距。 与之类似的传感器有雷达和声纳。 雷达和声纳使用无线电波和声波,激光雷达则使用光波,通常使用近红外波段光,避开人肉眼可识别的可见光。 激光雷达由三个主要部件:发射器、旋转器和光电探测器组成,示意图如下。

具体原理如下:激光雷达发射高密度的激光束,光束沿直行传播打到物体的表面,然后以相同的方向反射回去(忽略少量光线发生衍射现象),反射回去的光线由光电探测器(光敏传感器)检测收集,结合激光束往返传播的距离与方向信息就可以生成物体的3D几何形状。实际在使用过程中,激光发射器置于连续旋转的底座上,从而使得发射的激光束能以不同方向到达物体表面(前、后、左、右)。

1.3 3D点云数据主要特点

与传统2D图像数据相比,3D点云的主要特点对比如下。

2D 图像

3D点云

表现形式

3D世界的2D投影,不包含Z值

3D数据,包含Z值

数据结构

有序,依次连接

各数据点无序

环境敏感性

对环境光照条件敏感

对环境光照条件不敏感

处理方法

直接使用CNN等

不能直接使用CNN

2. 点云数据处理

对于点云数据的处理,主要涉及点云滤波、点云配准、点云分类、点云语义分割、点云目标识别等。

2.1 点云滤波(数据预处理)

点云滤波,顾名思义,就是滤掉噪声。原始采集的点云数据往往包含大量散列点、孤立点,比如下图为滤波前后的点云效果对比。

点云滤波的主要方法有:双边滤波、高斯滤波、条件滤波、直通滤波、随机采样一致滤波、VoxelGrid滤波等,这些算法都被封装在了PCL点云库中。

2.2 特征与特征描述

如果要对一个三维点云进行描述,光有点云的位置还不够,常常需要计算一些额外的参数,比如法线方向、曲率、纹理特征等等。如同图像的特征一样,我们需要使用类似的方式来描述三维点云的特征。

常用的特征描述算法:法线和曲率计算及特征值分析、PFH、FPFH、3D Shape Context、Spin Image等。

PFH:点特征直方图描述子,FPFH:跨苏点特征直方图描述子,FPFH是PFH的简化形式。

2.3 点云关键点提取

在二维图像上,有Harris、SIFT、SURF、KAZE这样的关键点提取算法,将特征点的思想推广到三维空间。从技术上来说,关键点的数量相比于原始点云或图像的数据量减小很多,与局部特征描述子结合在一起,组成关键点描述子用来形成原始数据的表示,而且不失代表性和描述性,从而加快了后续的识别,追踪等对数据的处理速度,关键点技术成为在2D和3D 信息处理中非常关键的技术。

常见的三维点云关键点提取算法有一下几种:ISS3D、Harris3D、NARF、SIFT3D

这些算法在PCL库中都有实现,其中NARF算法应用较为常见。

2.4 点云配准

点云配准的概念也可以类比于二维图像中的配准,相比二维图像配准获取得到的是x,y,alpha,beta等放射变化参数,二三维点云配准可以模拟三维点云的旋转和移动,也就是会获得一个旋转矩阵和一个平移向量,通常表达为一个4×3的矩阵,其中3×3是旋转矩阵,1*3是平移向量。严格说来是6个参数,因为旋转矩阵也可以通过罗格里德斯变换转变成1*3的旋转向量。

常用的点云配准算法有两种:正态分布变换和著名的ICP点云配准,此外还有许多其它算法,列举如下:

ICP:稳健ICP、point to plane ICP、point to line ICP、MBICP、GICP

NDT 3D、Multil-Layer NDT

FPCS、KFPSC、SAC-IA

Line Segment Matching、ICL

2.5 点云分割与分类

点云的分割与分类处理比二维图像的处理复杂很多,点云分割又分为区域提取、线面提取、语义分割与聚类等。同样是分割问题,点云分割涉及面太广,一般说来,点云分割是目标识别的基础。

分割:区域声场、Ransac线面提取、NDT-RANSAC、K-Means、Normalize Cut、3D Hough Transform(线面提取)、连通分析

分类:基于点的分类,基于分割的分类,监督分类与非监督分类。

2.6 目标识别与检测

这是点云数据处理中一个偏应用层面的问题,简单说来就是Hausdorff距离常被用来进行深度图的目标识别和检测,现在很多三维人脸识别都采用这种技术。

2.7 SLAM图优化

SLAM技术中,在图像前端主要获取点云数据,而在后端优化主要就是依靠图优化工具。而SLAM技术近年来的发展也已经改变了这种技术策略。在过去的经典策略中,为了求解LandMark和Location,将它转化为一个稀疏图的优化,常常使用g2o工具来进行图优化。常用的工具和方法如下。

g2o、LUM、ELCH、Toro、SPA

SLAM方法:ICP、MBICP、IDC、likehood Field、 Cross Correlation、NDT

2.8 变化检测

当无序点云在连续变化中,八叉树算法常常被用于检测变化,这种算法需要和关键点提取技术结合起来,八叉树算法也算是经典中的经典了。

2.9 三维重建

获取到的点云数据都是一个个孤立的点,从一个个孤立的点得到整个曲面就是三维重建的问题。

直接采集到的点云是充满噪声和孤立点的,三维重建算法为了重构出曲面,常常要应对这种噪声,获得看上去很光滑的曲面。

常用的三维重建算法和技术有:

泊松重建、Delauary triangulatoins

表面重建,人体重建,建筑物重建,输入重建

实时重建:重建纸杯或者农作物4D生长态势,人体姿势识别,表情识别

3. 点云数据集

已有的3D点云数据集主要有ModelNet40,ShapeNet,S3DIS,3D Match,KITTI,其中前3者主要应用于CAD模型,室内建筑物分割,室内场景配准等,KITTI数据集主要应用于自动驾驶、ADAS、外部场景视觉SLAM等。

4. 基于点云数据的目标识别

针对当前视觉SLAM采集的数据,下文重点对比点云数据的目标识别方法,包括传统方法和深度学习方法。

4.1 传统方法

1) 基于边缘的方法

检测点强度快速变化的边缘。这些边通常是点云中不同区域的边界。因此,点云的区域被分割。

2) 基于区域的方法

首先搜索邻域。附近的点具有相似模式的区域被组合成孤立区域,然后是发现不同区域之间的差异。

3)基于属性的方法

首先计算点云数据的属性,然后基于属性对点云进行聚类。

4.基于模型的方法

该方法是纯几何的。相同的点数学表示为几何形状,如球体、圆锥体、平面和圆柱体被分组为一个段。

5) 基于图的方法

将点云视为图。一个简单的模型是每个顶点对应一个点,边连接到特定的点与邻近点。

一般来说,分割点云有两个传统的分支。这个首先涉及纯数学模型和几何推理技术比如区域生长或模型拟合。第二个是3D图像的提取,使用特征描述符的特征和使用机器的对象类别分类学习技巧。

第一种方法提供了更快的计算速度,但它只适用于简单的场景。因此,第二种方法更为有效通常在实践中使用,通常表现更好。考虑到第二种方法,分割通常被表述为逐点分类问题。每个点首先由特征描述符描述例如FPFH或SHOT,它们依靠手工设计特征和点的局部几何特性。然后,提取特征被连接到特征向量并输入到分类器中,如支持向量机机器(SVM)和随机森林(RF)。

4.2深度学习方法

目前对于点云数据的分类与分割,深度学习方法已经成为主流。比较常用的有PointNet,PointNet++, DGCNN, PointCNN, PointSIFT, Point Transformer, and RandLANet等。其中以前两者应用居多。

1)PointNet

PointNet 网络结构如下所示。

由图可以看出,由于点云的旋转非常的简单,只需要对一个N×D的点云矩阵乘以一个D×D的旋转矩阵即可,因此对输入点云学习一个3×3的矩阵,即可将其矫正;同样的将点云映射到K维的冗余空间后,再对K维的点云特征做一次校对,只不过这次校对需要引入一个正则化惩罚项,希望其尽可能接近于一个正交矩阵。

具体来说,对于每一个N×3的点云输入,对应于原始N个点的3D坐标信息,网络先通过一个T-Net将其在空间上对齐(旋转到正面),其中T-Net就像一个迷你型-point-net网络,可学习得到3×3仿射变换矩阵。再通过MLP将其映射到64维的空间上,再进行对齐,最后映射到1024维的空间上。这时对于每一个点,都有一个1024维的向量表征,而这样的向量表征对于一个3维的点云明显是冗余的,因此这个时候引入最大池化操作,将1024维所有通道上都只保留最大的那一个,这样得到的1×1024的向量就是N个点云的全局特征。

如果做的是分类的问题,直接将这个全局特征再进过MLP去输出每一类的概率即可;但如果是分割问题,由于需要输出的是逐点的类别,因此其将全局特征拼接在了点云64维的逐点特征上,网络能够同时利用局部和全局特征的几何和全局语义,最后通过MLP,输出逐点的分类概率。

2)PointNet++

从很多实验结果都可以看出,PointNet对于场景的分割效果十分一般,由于其网络直接暴力地将所有的点最大池化为了一个全局特征,因此局部点与点之间的联系并没有被网络学习到。在分类和物体的Part Segmentation中,这样的问题还可以通过中心化物体的坐标轴部分地解决,但在场景分割中,这就导致效果十分一般了。

进一步地研究人员提出了一个分层特征学习框架PointNet++来解决这个问题,从而改善PointNet的一些局限性。分层学习过程是通过一系列设定的抽象级别。每个集合抽象级别由一个采样组层、分组层和PointNet层。PointNet++网络结构

如下所示。

PointNet++中主要借鉴了CNN的多层感受野的思想。CNN通过分层不断地使用卷积核扫描图像上的像素并做内积,使得越到后面的特征图感受野越大,同时每个像素包含的信息也越多。而PointNet++就是仿照了这样的结构,具体如下:

其先通过在整个点云的局部采样并划一个范围,将里面的点作为局部的特征,用PointNet进行一次特征的提取。因此,通过了多次这样的操作以后,原本的点的个数变得越来越少,而每个点都是有上一层更多的点通过PointNet提取出来的局部特征,也就是每个点包含的信息变多了。文章将这样的一个层成为Set Abstraction。

一个Set Abstraction主要由三部分组成:

  • Sampling:利用FPS(最远点采样)随机采样点
  • Grouping:利用Ball Query划一个R为半径的圈,将每个圈里面的点云作为一簇
  • PointNet: 对Sampling+Grouping以后的点云进行局部的全局特征提取

3)DGCNN

点云这种数据结构是离散的,缺乏拓扑信息(也就是单个点与点之间的关联并没有显式建立,但是它们之间应该是有实际意义的)。

自然而然地,如果我们能够通过某种方式建立点与点之间的拓扑关系,应该可以增强表征的能力。

通过设计EdgeConv,能够非常好地提取点云局部形状的特征,同时还能够保持排列不变性。

DGCNN模型能够通过动态更新层与层之间的图结构来更好地学习点集的语义信息。

所设计的EdgeConv具有普适性,可以很好地集成到多个已经存在的点云处理的pipeline中。

4)PointCNN

PointCNN也是直接对点云数据进行处理,并没有转化为其他的数据形式。借鉴卷积操作对规则数据的处理,想到先对无序点云进行一个X操作,将其转化为规则数据。

整个过程,感觉应该是在knn的部分实现了一个结构化,然后在X操作之后实现了对整个数据的规则化。

相较于PointNet,对点云数据是进行逐点卷积的一维卷积操作,PointCNN类似于图片的卷积操作,充分考虑到了局部信息。

5)PointSIFT

PointSIFT属于PointNet系列,是在PointNet++的基础上提出来的,里面的很多概念都直接用了PointNet++。

因为CNN和SIFT在2D领域提取特征有不错的表现,之前用了CNN,构成了pointCNN,所以这里尝试SIFT,就形成了PointSIFT。

PointNet++在grouping的时候采用KNN,这可能导致这些点都是一个方向的,PointSIFT找到的点是8个方向的。

PointNet++的max pooling会忽略很多信息,而有序的描述子能保留更多信息,所以用了conv提取特征。

ordering of the three coordinatesOE unit在八个八分圆上找最近点得到(2,2,2)的最近点集合,八分圆是通过三个坐标的顺序划分的orientation-encoding convolution, 分别沿着XYZ进行卷积,得到(2,2,2,d)的特征,其中(2,2,2)对应三个坐标轴,pointnet++的multi scale grouping。

PointSIFT的主要特点:

(1)捕获所有方向的信息

​(2)具有尺度感知能力

​(3)具有很强的可移植性

6)Point Transformer

Transformer模型特别适合于点云处理,因为自注意力是Transformer的核心,本质上是一个集合算子:它对输入元素具有顺序不变性和数量不变性,因此,将自注意力机制用于点云是自然而然的,因为点云本质上也是嵌入在3D空间的集合。

通过将这种直觉具体化,并开发了一个用于3D点云处理的自注意层。

Point Transformer主要特点在于:

1)为点云处理设计了一个表达能力非常强的Point Transformer Layer。该层具有顺序不变性和数量不变性,因此天生适合点云处理。

2)在Point Transformer Layer的基础上,构建了高性能的Point Transformer networks,用于点云的分类和密度预测dense prediction,这些网络可以作为3D场景理解的一般骨干。
 

7)RandLANet

RandLANet是一种基于随机降采样和局部特征聚合的网络结构。在Semantic3D和SemanticKITTI等大场景点云分割数据集上取得了较好的效果,具有很高的效率,实验称相比基于图的方法SPG效率提升200倍。

主要特点在于: 

1)分析和比较了现有的点云降采样方法,将降采样方式分为Heuristic Sampling以及Learning-based Sampling两大类。并且认为随机降采样是一种适合大规模点云高效学习的方法。

2)为了降低随机采样的信息丢失,进一步提出了局部特征聚合模块(Local feature aggregation),包括三个子模块:  

     1) 局部空间编码(LocSE):显式地编码三维点云的空间几何形状信息,网络能够从各个点的相对位置以及距离信息中更好地学习到空间的几何结构; 

     2) 注意力池化(attentive pooling):上一步的邻域特征点集的加权求和,进行特征聚合(特征深度融合); 

    3) 扩张残差块(dilated residual block): 增大每个点的感受野,通过逐步增加每个点的感受野来更好地学习和保留大场景点云中复杂的几何结构。

RandLA-Net网络在多个大场景点云的数据集上都展现出较好的效果,及较高的计算效率,

与之前的采样方法不同,论文使用了最简单高效的RS(Random Sampling)。RS的优点在于:

  1. 时间复杂度低,高效
  2. 空间复杂度低,基本不需要额外的内存

因此,作者认为,Random Sampling是最适合处理大规模点云的采样方式。这种采样带来的问题是:可能会丢失一些重要的点。为了解决重要点可能丢失的问题,论文提出了局部特征整合模块LFA(local feature aggregation module)。

5. 参考文献

1.3D Point Cloud Analysis: Traditional, Deep Learning, and Explainable Machine Learning Methods

2.A comprehensive survey on point cloud registration

3.PointNet-Deep Learning on Point Sets for 3D Classification and Segmentation

4.RandLA-Net Efficient Semantic Segmentation of Large-Scale Point Clouds

  • 12
    点赞
  • 105
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
中望3DTM是由中望公司最新推出的一款高性价比的CAD/CAM一体化解决方案,同时也是中国唯一一款具有全球自主知识产权的三维设计软件。 中望3D拥有完备的功能模块,造型、模具、装配、加工、逆向工程、钣金等功能模块一应俱全,具有兼容性强、易学易用等特点,并能和主流的三维设计软件实现数据的高度兼容,帮助工程师轻松完成从概念到产品的设计。采用中望3D是企业大幅提高生产力并降低设计和制造成本,从而实现从设计到加工的最佳途径。 中望3D2011版功能介绍: 易学易用 中望3D内嵌“边学边用”系统,具有丰富的练习案例,相当于一本3D教学教材,设计师能按他们自己的节奏去学习,能帮助用户最大限度削减培训成本,缩短软件学习周期。 强大数据交互能力 能够读取CATIA,NX,SolidWorks,Pro/E,Inventor和其它模型文件,支持市面上所有主流设计系统的2D和3D数据交换与分享,提升供应链的协作。 创新的建模能力 强大的OverdriveTM混合建模内核,全相关的2D草图、零件库与数据管理,使复杂模型从概念到完成的设计变得简单。 直接编辑和快速编辑 中望3D SmoothflowTM直接编辑功能允许修改和操作开放或封闭的模型。这种交互式人机图形编辑命令提高了在复杂建模时的工作效率,让设计师专注于设计,而不是设计系统。 零件库 中望3D里集成了PartSolutionsTM零件库,提供国际标准零件和主流的厂商零件,包括ANSI、DIN、EN、GB、ISO、JB、JIS、DME、HASCO、MISUMI等。 完善的模具设计工具 混合建模工具为仅用简单步骤建立拔模,分模,模具型芯型腔制作提供了可能,模具模型建立更容易。模具功能中还提供一些主要的模具设计模块,如滑块、抽芯、顶针和冷却水道等。零件库功能提供一些主流厂商的模架零件,方便用户快速建立整个模具系统。 自动工具可以快速、批量地创建加工电极,电极底座也可同时生成,并可生成电极表。特征识别让生成电极起来非常方便。 中望3D引导用户从建立模具过程,到查询、模拟和分析设计,以保证设计出的模具可加工和实用性,为中望3D CAM加工步骤做好准备。 钣金设计 针对钣金零件,中望3D里可以根据钣金件的特点,进行钣金折弯、创建加强筋或凹陷,增加百叶窗等。并能够对设计好的钣金件进行展开或折叠,从而方便快速地创建钣金实体。 先进的CNC加工技术 中望3D提供强大的CAM功能,能够生成2轴至5轴的CNC程序。自动分析中望3D的模型,使用自动加工策略,能够自动识别零件中的腔体、孔和曲面等特征,并运用最合适的加工刀具和加工路线。 粗加工和精加工方法考虑了坯料,夹具和每次加工余量,最小化空切,根据刀具的情况提供最适合的加工进给率控制,从而延长刀具使用寿命,并提高最后加工零件的质量。高速铣方式运用在硬质材料,提供高速光滑流线加工路线,达到加工表面均匀且高质量。 可选择性的5轴刀路策略提供了一套让编程者选择的刀路,像平面铣用来保持刀具垂直加工表面,以及边侧铣削保持刀具的一侧与加工表面进行贴合。 高性价比 造型、模具、装配、加工、逆向工程、钣金等功能模块一应俱全,价格公道,为企业降低设计成本。 中望3DTM下载说明:由于中望3DTM安装包较大,为方便用户下载使用,特将中望3DTM安装包分为运行包和素材包。运行包主要包括支撑中望3DTM运行的全部文件;素材包主要包括帮助文档、培训手册、零件库以及实例图纸等内容。安装时,用户需要先安装运行包,然后安装素材包。欢迎下载使用! 素材包地址:http://www.zwcad.com/download_detail_7_95.html 中望3DTM是由中望公司最新推出的一款高性价比的CAD/CAM一体化解决方案,同时也是中国唯一一款具有全球自主知识产权的三维设计软件。 中望3D拥有完备的功能模块,造型、模具、装配、加工、逆向工程、钣金等功能模块一应俱全,具有兼容性强、易学易用等特点,并能和主流的三维设计软件实现数据的高度兼容,帮助工程师轻松完成从概念到产品的设计。采用中望3D是企业大幅提高生产力并降低设计和制造成本,从而实现从设计到加工的最佳途径。 中望3D2011版功能介绍: 易学易用 中望3D内嵌“边学边用”系统,具有丰富的练习案例,相当于一本3D教学教材,设计师能按他们自己的节奏去学习,能帮助用户最大限度削减培训成本,缩短软件学习周期。 强大数据交互能力 能够读取CATIA,NX,SolidWorks,Pro/E,Inventor和其它模型文件,支持市面上所有主流设计系统的2D和3D数据交换与分享,提升供应链的协作。 创新的建模能力 强大的OverdriveTM混合建模内核,全相关的2D草图、零件库与数据管理,使复杂模型从概念到完成的设计变得简单。 直接编辑和快速编辑 中望3D SmoothflowTM直接编辑功能允许修改和操作开放或封闭的模型。这种交互式人机图形编辑命令提高了在复杂建模时的工作效率,让设计师专注于设计,而不是设计系统。 零件库 中望3D里集成了PartSolutionsTM零件库,提供国际标准零件和主流的厂商零件,包括ANSI、DIN、EN、GB、ISO、JB、JIS、DME、HASCO、MISUMI等。 完善的模具设计工具 混合建模工具为仅用简单步骤建立拔模,分模,模具型芯型腔制作提供了可能,模具模型建立更容易。模具功能中还提供一些主要的模具设计模块,如滑块、抽芯、顶针和冷却水道等。零件库功能提供一些主流厂商的模架零件,方便用户快速建立整个模具系统。 自动工具可以快速、批量地创建加工电极,电极底座也可同时生成,并可生成电极表。特征识别让生成电极起来非常方便。 中望3D引导用户从建立模具过程,到查询、模拟和分析设计,以保证设计出的模具可加工和实用性,为中望3D CAM加工步骤做好准备。 钣金设计 针对钣金零件,中望3D里可以根据钣金件的特点,进行钣金折弯、创建加强筋或凹陷,增加百叶窗等。并能够对设计好的钣金件进行展开或折叠,从而方便快速地创建钣金实体。 先进的CNC加工技术 中望3D提供强大的CAM功能,能够生成2轴至5轴的CNC程序。自动分析中望3D的模型,使用自动加工策略,能够自动识别零件中的腔体、孔和曲面等特征,并运用最合适的加工刀具和加工路线。 粗加工和精加工方法考虑了坯料,夹具和每次加工余量,最小化空切,根据刀具的情况提供最适合的加工进给率控制,从而延长刀具使用寿命,并提高最后加工零件的质量。高速铣方式运用在硬质材料,提供高速光滑流线加工路线,达到加工表面均匀且高质量。 可选择性的5轴刀路策略提供了一套让编程者选择的刀路,像平面铣用来保持刀具垂直加工表面,以及边侧铣削保持刀具的一侧与加工表面进行贴合。 高性价比 造型、模具、装配、加工、逆向工程、钣金等功能模块一应俱全,价格公道,为企业降低设计成本。 中望3D是广州中望龙腾软件股份有限公司拥有全球自主知识产权的高端三维CAD/CAM一体化产品。中望3D技术建立在一个独特的、高性能的Overdrive混合建模内核上,这使得计算速度更快,精度更高,也使中望3D处理复杂图形和海量数据有了保证。使用速度极快的中望3D混合建模工具,工程师们能够充分感受快速实体和曲面混合建模的强大功能,自带的CAM模块使得从设计到加工不存在任何文件衔接问题,钣金、模具设计、逆向工程、渲染、分析等模块的应用丰富了用户的工作需求,从入门级的模型设计到全面的一体化解决方案,中望3D都能提供强大的功能以及卓越的性能。 中望3D标准版包含中望3D产品里所有的高级设计模块,提供了一个功能强大、并且有着极高效率的建模工具。利用混合建模您可以在同一个环境下控制实体和曲面无缝结合。高效易用的钣金设计、模型修补功能这些附加的模块使中望3D标准版成为一个功能强大的设计软件包。(对应的素材包过大,请到中望官网下载。) 中望3D标准版主要功能亮点有: 超快数据转换 通过内置转换程序,轻松读取所有设计系统的数据 支持Catia V4、Catia V5、NX(Unigraphics)、Pro/E、Parasolid、SAT、STEP、DWG/DXF、STL、VDA等文件格式 随心所欲的建模 中望3D集线框体、曲面与实体的功能于一体。设计者可以使用实体工具如拉伸、旋转、扫描、放样产生基本实体再加上特征如切除、挖孔、倒圆角等完成设计。可让设计者通过参数化的方式建立复杂的实体和曲面建模功能 中望3D的钣金设计功能让您的设计构想付诸现实 2D工程图 从3D模型生成2D图并可自动更新,及时反映模型或装配体的变化 自动布局三视图、剖面图、局部放大图,并自动标注 自动生成BOM表、孔表和电极表 让图片内容立体起来 充满艺术感的浮雕效果和变形功能让图片变成生动的立体图形 极富操作乐趣的学习 这不是简单意义上的教程,“边学边用”内嵌于中望3DTM软件之中,学习者可以一边观看学习示例,一边操作软件;操作提示、功能介绍皆在眼前 让您一步一步跟随操作,轻松完成复杂的建模和装配,甚至加工的学习 装配体运动仿真和验证 运动仿真让您对设计中可能存在的干涉了如指掌,从而提前避免或及时排除可能遇到的问题 实体验证功能,可以让用户快速观察到模拟验证的情况,可以减少所需的实物样机数量 即刻修改出现的问题 干涉、倒拔模斜度、弯曲变形等问题实时显示出来 自由设计 可以自上向下,自下向上或同时以两种方式构建装配 组件可以灵活地保存在一个或多个中望3D文件中 轻松处理大文件 Burst技术通过动态数据检索轻松处理大型装配 消除模型的间隙和破面 存在间隙或破面的不封闭实体或曲面,不用修复就能像封闭实体一样进行操作 中望3D强大的曲面造型和方便的修复和缝合工具极大的方便了间隙和破面的修补
请仔细阅读备注:试用版激活方式选择:Activate?Lat? 激活码:715-320077-0270?每台计算机限制激活20次; 许可证协议无法勾选时,请将右侧滚动条拖至底部即可! 激活码使用说明书:http://www.chemdraw.com.cn/renzheng/ruanjian-jihuo.html ChemBioDraw 是全球领先的科学绘图工具。它不仅使用简便、输出质量高,并且结合了强大的化学智能技术,囊括了丰富的生物学工具,集成 ChemBioOffice 套件,受到成千上万用户的喜爱。 ChemBioDraw 包括一些可选组件:STATISTICA Base——用于更详细的数值分析;MNova Lite——用于快速处理NMR 数据;化学脚本语言ChemScrip——用于将结构相关的过程自动化以及关联其它应用程序。 ChemBioDraw Ultra相关特性及 强大的化学、生物绘图功能 科学家可以利用丰富多样的化学生物模板来绘制各种化学结构、细胞及生物通路图,从而有助于准确地交流研究成果和观点。ChemBioDraw可编辑与化学和生物相关的绝大多数图形。 增加新的生物绘图工具 科学家可以利用 ChemBioDraw 准确处理和描绘有机材料、有机金属、聚合材料和生物聚合物(包括氨基酸、肽、DNA 及 RNA 序列等),以及处理高级形式的立体化学结构。在BioDraw工具栏中新增tRNA工具和核糖核酸工具、质粒图工具以及序列工具。 支持结构与性质关系 支持结构命名,系统对有确切化学意义的结构,可用IUPAC规则为结构命名,给出一个化合物名称,系统可将其展开为化学结构,ChemNMR可用于估算或显示分子中的1H、13C的化学位移。 支持SD文件系统 SD文件是一种许多化学软件通用的格式文件,可在一个文件中包括许多结构。支持对数据库连接,可及时与Internet连接并不断更新化学数据。同时可将结构图插入到Word、Excel、PPT及FrontPage网页中。 软件截图
点云数据语义分割是一种将点云数据中的点分为不同的类别的方法,以实现场景理解和三维物体识别的目的。这项技术在工业、医学、自动驾驶和机器人等领域都被广泛应用。 点云数据语义分割的理论和方法主要包括以下几个方面: 首先是点云数据的预处理。由于点云数据密度不均匀,质量不一,需要先进行清洗和滤波,去除噪声和异常点,提高数据质量。 其次是特征提取。由于点云数据没有像二维图像一样的坐标系和颜色信息,因此需要通过特征提取来获得关键特征。目前常用的特征提取方法包括基于滤波、基于局部区域和基于全局形状的方法等。 然后是语义分割模型的建立。常用的语义分割模型包括传统的基于机器学习和深度学习方法,如随机森林、支持向量机、卷积神经网络等。随着深度学习的发展,基于深度学习的语义分割方法已成为主流。 最后是训练和测试。在训练时,先利用标注好的点云数据进行模型训练,使其具有分割不同类别的能力。在测试时,用训练好的模型对新的点云数据进行预测和分类,以完成语义分割的任务。 总之,点云数据语义分割的理论和方法是一个涉及到多个方面的综合性问题,需要通过数据预处理、特征提取、模型建立和训练测试等步骤来实现。但这一技术的应用前景广泛,具有重要的商业和社会价值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

scott198512

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值