LLE原理及推导过程

LLE是一种流形学习方法,适用于高维数据降维。该算法基于局部线性近似,保留数据点与其近邻之间的拓扑结构。通过最小化损失函数找到权重系数,然后在低维空间中重构数据。LLE的效果通常优于PCA。在适当选择k值时,LLE能有效展示数据的流形结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.概述

      所谓LLE(局部线性嵌入)即”Locally Linear Embedding”的降维算法,在处理所谓流形降维的时候,效果比PCA要好很多。
      首先,所谓流形,我们脑海里最直观的印象就是Swiss roll,在吃它的时候喜欢把它整个摊开成一张饼再吃,其实这个过程就实现了对瑞士卷的降维操作,即从三维降到了两维。降维前,我们看到相邻的卷层之间看着距离很近,但其实摊开成饼状后才发现其实距离很远,所以如果不进行降维操作,而是直接根据近邻原则去判断相似性其实是不准确的。

     LLE的降维实现过程,直观的可视化效果如下图1所示:

                                                

2.LLE的原理

所谓局部线性,即认为在整个数据集的某个小范围内,数据是线

### LLE算法概述 LLE(Locally Linear Embedding)是一种非线性降维技术,其核心思想在于保持数据在高维空间中的局部几何结构不变的情况下将其映射到低维空间。该算法假设数据点可以由其邻居点的线性组合表示,并试图在低维空间中保留这种线性关系[^1]。 --- ### LLE算法的核心原理 LLE的主要目标是在低维空间中重构原始数据点之间的局部线性关系。具体而言: - **邻域选择**:对于每一个数据点 \(x_i\) ,找到与其最接近的 \(k\) 个近邻点。 - **权重计算**:基于这些近邻点,求解一组最优权值向量 \(W_{ij}\),使得每个数据点可以通过它的近邻点加权和来重建。 - **维度降低**:寻找一个新的低维坐标系,在此新坐标系下,上述权值矩阵仍然能够很好地描述数据点间的相互关系[^2]。 --- ### Python实现LLE算法 以下是使用 NumPy 和 scikit-learn 工具包分别手动实现与调用内置函数两种方式完成 LLE 的代码示例。 #### 手动实现LLE ```python import numpy as np from scipy.spatial.distance import cdist from scipy.sparse.linalg import eigsh def lle(data, n_neighbors, n_components): # Step 1: 计算每一点的最近邻 distances = cdist(data, data) indices = np.argsort(distances, axis=1)[:, :n_neighbors] # Step 2: 构建权重矩阵 W N = data.shape[0] W = np.zeros((N, N)) for i in range(N): Z = data[indices[i]] - data[i] C = np.dot(Z, Z.T) w = np.linalg.solve(C, np.ones(n_neighbors)) W[i, indices[i]] = w / np.sum(w) # Step 3: M = (I-W)^T * (I-W), 并提取最小特征值对应的特征向量作为新的坐标轴 I = np.eye(N) M = np.dot((I - W).T, I - W) eigenvalues, eigenvectors = eigsh(M, k=n_components+1, which='SM') return eigenvectors[:, 1:] ``` #### 使用scikit-learn实现LLE ```python from sklearn.manifold import LocallyLinearEmbedding def LLE_sk(attributes, components, neighbors): lle_model = LocallyLinearEmbedding( n_components=components, n_neighbors=neighbors, method="standard" ) reduced_data = lle_model.fit_transform(attributes) return reduced_data ``` 以上两段代码展示了如何通过不同途径实现LLE降维功能[^3]。 --- ### LLE的应用场景 LLE广泛应用于图像处理、生物信息学等领域。例如,在人脸识别任务中,通过对人脸图片进行降维处理后可有效减少存储需求并提升分类效率;而在基因表达数据分析方面,则有助于揭示隐藏模式从而辅助疾病诊断等工作。 ---
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

scott198512

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值